2014, Número 2
<< Anterior Siguiente >>
Investigación en Discapacidad 2014; 3 (2)
La enigmática señalización del ácido lisofosfatídico durante el desarrollo de las extremidades, la artritis reumatoide y la osteoartritis
Sánchez-Sánchez R, Melgarejo-Ramírez Y, Ibarra-Ponce de León C, Velasquillo-Martínez C, Escalante-Alcalde D
Idioma: Español
Referencias bibliográficas: 59
Paginas: 61-68
Archivo PDF: 226.12 Kb.
RESUMEN
El ácido lisofosfatídico (LPA, del inglés
lysophosphatidic acid) es un lípido bioactivo que tiene la capacidad de unirse a receptores acoplados a las proteínas G y mediar a través de ellos distintas respuestas celulares tales como: proliferación, migración, apoptosis y diferenciación celular. En recientes años este lípido se ha visto involucrado en patologías como artritis reumatoide y osteoartritis; sin embargo, evidencias sugieren que también puede jugar un papel importante durante el desarrollo de las extremidades, así como de las articulaciones. Esta breve revisión aborda un panorama general de los procesos en los que se ha visto involucrado el LPA tanto en las patologías mencionadas y su posible papel en el desarrollo de la extremidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Van der Kraan PM. Understanding developmental mechanisms in the context of osteoarthritis. Curr Rheumatol Rep. 2013; 15 (6): 333.
Dottori M, Leung J, Turnley AM, Pebay A. Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells. 2008; 26 (5): 1146-54.
Harrison SM, Reavill C, Brown G, Brown JT, Cluderay JE, Crook B et al. LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol Cell Neurosci. 2003; 24 (4): 1170-1179.
Ye X, Ishii I, Kingsbury MA, Chun J. Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta. 2002; 1585 (2-3): 108-113.
Choi JW, Herr DR, Noguchi K et al. LPA receptors: subtypes and biological actions. Annual Review of Pharmacology and Toxicology. 2010; 50: 157-186.
Choi JW, Lee CW, Chun J. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim Biophys Acta. 2008; 1781 (9): 531-539.
Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004; 73: 321-354.
Berliner JA, Subbanagounder G, Leitinger N, Watson AD, Vora D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc Med. 2001; 11 (3-4): 142-147.
Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med. 2006; 12 (2): 65-75.
Zeller R, López-Ríos J, Zuniga A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nature reviews. Genetics. 2009; 10 (12): 845-858.
Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature. 2008; 453 (7193): 401-405.
Maden M, Sonneveld E, van der Saag PT, Gale E. The distribution of endogenous retinoic acid in the chick embryo: implications for developmental mechanisms. Development. 1998; 125 (21): 4133-4144.
Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nature reviews. Neuroscience. 2007; 8 (10): 755-765.
Mariani FV, Martin GR. Deciphering skeletal patterning: clues from the limb. Nature. 2003; 423 (6937): 319-325.
Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell. 1995; 83 (4): 631-640.
Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature. 2002; 418 (6897): 501-508.
Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008; 135 (3): 483-491.
Cooper KL, Hu JK, ten Berge D, Fernández-Teran M, Ros MA, Tabin CJ. Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science. 2011; 332 (6033): 1083-1086.
ten Berge D, Brugmann SA, Helms JA, Nusse R. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development. 2008; 135 (19): 3247-3257.
Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell. 2004; 118 (4): 517-528.
Dahn RD, Fallon JF. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science. 2000; 289 (5478): 438-441.
Sanz-Ezquerro JJ, Tickle C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr Biol. 2003; 13 (20): 1830-1836.
Rowe DA, Cairns JM, Fallon JF. Spatial and temporal patterns of cell death in limb bud mesoderm after apical ectodermal ridge removal. Developmental Biology. 1982; 93 (1): 83-91.
Suzuki T, Hasso SM, Fallon JF. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc Natl Acad Sci USA. 2008; 105 (11): 4185-4190.
Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Developmental Biology. 1999; 209 (1): 11-27.
Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001; 104 (3): 341-351.
Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004; 18 (19): 2404-2417.
Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998; 280 (5368): 1455-1457.
Garciadiego-Cazares D, Rosales C, Katoh M, Chimal-Monroy J. Coordination of chondrocyte differentiation and joint formation by alpha5beta1 integrin in the developing appendicular skeleton. Development. 2004; 131 (19): 4735-4742.
Ohuchi H, Hamada A, Matsuda H et al. Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn. 2008; 237 (11): 3280-3294.
Zheng ZQ, Fang XJ, Qiao JT. Dual action of lysophosphatidic acid in cultured cortical neurons: survival and apoptogenic. Sheng Li Xue Bao [Acta Physiologica Sinica]. 2004; 56 (2): 163-171.
Steiner MR, Holtsberg FW, Keller JN, Mattson MP, Steiner SM. Lysophosphatidic acid induction of neuronal apoptosis and necrosis. Ann NY Acad Sci. 2000; 905: 132-141.
Fotopoulou S, Oikonomou N, Grigorieva E et al. ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol. 2010; 339 (2): 451-464.
Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH et al. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol. 2002; 22 (19): 6921-6929.
Ohuchi H, Hayashibara Y, Matsuda H, Onoi M, Mitsumori M, Tanaka M et al. Diversified expression patterns of autotaxin, a gene for phospholipid-generating enzyme during mouse and chicken development. Dev Dyn. 2007; 236 (4): 1134-1143.
Winslow BB, Burke AC. Atypical molecular profile for joint development in the avian costal joint. Dev Dyn. 2010; 239 (10): 2547-2557.
Bachner D, Ahrens M, Betat N, Schroder D, Gross G. Developmental expression analysis of murine autotaxin (ATX). Mech Dev. 1999; 84 (1-2): 121-125.
Itoh R, Miura S, Takimoto A, Kondo S, Sano H, Hiraki Y. Stimulatory actions of lysophosphatidic acid on mouse ATDC5 chondroprogenitor cells. J Bone Miner Metab. 2010; 28 (6): 659-671.
Escalante-Alcalde D, Morales SL, Stewart CL. Generation of a reporter-null allele of Ppap2b/Lpp3 and its expression during embryogenesis. Int J Dev Biol. 2009; 53 (1): 139-147.
Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001; 44 (6): 1237-1247.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988; 31 (3): 315-324.
Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996; 85 (3): 307-310.
Van Eekeren IC, Clockaerts S, Bastiaansen-Jenniskens YM, Lubberts E, Verhaar JA, van Osch GJ et al. Fibrates as therapy for osteoarthritis and rheumatoid arthritis? A systematic review. Ther Adv Musculoskelet Dis. 2013; 5 (1): 33-44.
Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best practice & research. Clinical Rheumatology. 2006; 20 (5): 1003-1025.
Ribel-Madsen S, Bartels EM, Stockmarr A et al. A synoviocyte model for osteoarthritis and rheumatoid arthritis: response to ibuprofen, betamethasone, and ginger extract-a cross-sectional in vitro study. Arthritis. 2012; 2012: ID 505842.
Furuzawa-Carballeda J, Macip-Rodríguez PM, Cabral AR. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin Exp Rheumatol. 2008; 26 (4): 554-560.
Meszaros E, Malemud CJ. Prospects for treating osteoarthritis: enzyme-protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis. 2012; 3 (5): 219-229.
Mototani H, Iida A, Nakajima M, Furuichi T, Miyamoto Y, Tsunoda T et al. A functional SNP in EDG2 increases susceptibility to knee osteoarthritis in Japanese. Hum Mol Genet. 2008; 17 (12): 1790-1797.
Johnson K, Hashimoto S, Lotz M, Pritzker K, Goding J, Terkeltaub R. Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis and Rheumatism. 2001; 44 (5): 1071-1081.
Nikitopoulou I, Oikonomou N, Karouzakis E, Sevastou I, Nikolaidou-Katsaridou N, Zhao Z et al. Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. J Exp Med. 2012; 209 (5): 925-933.
Zhao C, Fernandes MJ, Prestwich GD, Turgeon M, Di Battista J, Clair T, Poubelle PE et al. Regulation of lysophosphatidic acid receptor expression and function in human synoviocytes: implications for rheumatoid arthritis? Mol Pharmacol. 2008; 73 (2): 587-600.
Orosa B, González A, Mera A, Gómez-Reino JJ, Conde C. Lysophosphatidic acid receptor 1 suppression sensitizes rheumatoid fibroblast-like synoviocytes to tumor necrosis factor-induced apoptosis. Arthritis Rheum. 2012; 64 (8): 2460-2470.
Gierse J, Thorarensen A, Beltey K, Bradshaw-Pierce E, Cortes-Burgos L, Hall T et al. A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation. J Pharmacol Exp Ther. 2010; 334 (1): 310-317.
Rüger B, Giurea A, Wanivenhaus AH, Zehetgruber H, Hollemann D, Yanagida G et al. Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 2004; 50 (7): 2157-2166.
Mi M1, Shi S, Li T, Holz J, Lee YJ, Sheu TJ et al. TIMP2 deficient mice develop accelerated osteoarthritis via promotion of angiogenesis upon destabilization of the medial meniscus. Biochem Biophys Res Commun. 2012; 423 (2): 366-372.
Weng LH, Ko JY, Wang CJ, Sun YC, Wang FS. Dkk-1 promotes angiogenic responses and cartilage matrix proteinase secretion in synovial fibroblasts from osteoarthritic joints Arthritis Rheum. 2012; 64 (10): 3267-3277.
Chen Y, Ramakrishnan DP, Ren B. Regulation of angiogenesis by phospholipid lysophosphatidic Acid. Frontiers in bioscience. Front Biosci (Landmark Ed). 2013; 18: 852-861.
Teo ST, Yung YC, Herr DR, Chun J. Lysophosphatidic acid in vascular development and disease. IUBMB Life. 2009; 61 (8): 791-799.
http://www.emouseatlas.org/gxdb/dbImage/segment5/21139/detail_21139.html