2014, Número 2
<< Anterior Siguiente >>
Investigación en Discapacidad 2014; 3 (2)
Aspectos genéticos del glaucoma primario de ángulo abierto en el adulto
Gálvez-Rosas A
Idioma: Español
Referencias bibliográficas: 68
Paginas: 69-76
Archivo PDF: 341.98 Kb.
RESUMEN
El glaucoma es la segunda causa de daño visual y ceguera a nivel mundial. El principal tipo de glaucoma en muchas poblaciones es el glaucoma primario de ángulo abierto (GPAA); dependiendo de la edad, se encuentra el tipo de GPAA de inicio temprano, llamado glaucoma primario de ángulo abierto juvenil (GPAAJ), que frecuentemente muestra un patrón de herencia mendeliano, pero el subtipo más prevalente es el llamado GPAA de inicio en el adulto, que presenta un patrón de herencia complejo en la mayoría de los casos. En general, más de 15 loci genéticos han sido reportados; pero únicamente cinco genes han sido identificados en estos loci como los causantes de glaucoma: la miocilina (MYOC), la optineurina (OPTN), el WD con dominios de 36 repetido (WDR36), el citocromo P450 1B1 (CYP1B1) y la neurotrofina 4 (NTF4). Sin embargo, el porcentaje de mutaciones en estos genes en pacientes con GPAA es bajo; en algunos de estos casos tienen un patrón de herencia mendeliano, y en una fracción considerable resultan de un gran número de variantes de diferentes genes que contribuyen al fenotipo. El objetivo de esta revisión es proporcionar una visión general de la genética del glaucoma primario de ángulo abierto, con especial atención a la forma adulta.
REFERENCIAS (EN ESTE ARTÍCULO)
Fan BJ, Wiggs JL. Glaucoma: genes, phenotypes, and new directions for therapy. J Clin Invest. 2010; 120 (9): 3064-3072.
Quigley HA. Glaucoma. Lancet. 2011; 377: 1367-1377.
Fuse N. Genetic bases for glaucoma. Tohoku J Exp Med. 2010; 221: 1-10.
Kwon YH, Fingert JH, Kuehn MH et al. Primary open-angle glaucoma. N Engl J Med. 2009; 360 (11): 1113-1124.
Ramakrishnan R, Khurana M. Surgical management of glaucoma: an Indian perspective. Indian J Ophthalmol. 2011; 59 (Suppl): S118-122.
Rose R, Karthikeyan M, Anandan B et al. Myocilin mutation among primary open angle glaucoma patients of Kanyakumari district, South India. Mol Vis. 2007; 13: 497-503.
López-López G, Gastélum-Guerrero J. Prevalencia de glaucoma primario en la coordinación universitaria del Hospital Civil de Culiacán en el periodo 2003-2005. Bol Med UAS. 2006; 12 (2): 12-15.
Gilbert-Lucido ME, García-Huerta M, Ruiz-Quintero N et al. Estudio epidemiológico de glaucoma en población mexicana. Rev Mex Oftalmol. 2010; 84 (2): 86-90.
Voleti VB, Hubschman JP. Age-related eye disease. Maturitas. 2013; 75 (1): 29-33.
Klein R, Klein BE. The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest Ophthalmol Vis Sci. 2013; 54 (14): 5-13.
Kini MM, Leibowitz HM, Colton T et al. Prevalence of senile cataract, diabetic retinopathy, senile macular degeneration, and open-angle glaucoma in the Framingham Eye Study. Am J Ophthalmol. 1978; 85: 28-34.
Goel M, Picciani RG, Lee RK et al. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010; 3 (4): 52-59.
Sharts-Hopko NC, Glynn-Milley C. Primary open-angle glaucoma. Am J Nurs. 2009; 109 (2): 40-47.
Wolfs RC, Klaver CC, Ramrattan RS et al. Genetic risk of primary open-angle glaucoma. Arch Ophthalmol. 1998; 116: 1640-1645.
Fan BJ, Wang DY, Lam DS et al. Gene mapping for primary open angle glaucoma. Clin Biochem. 2006; 39 (3): 249-258.
Rao KN, Nagireddy S, Chakrabarti S. Complex genetic mechanisms in glaucoma: an overview. Indian J Ophthalmol. 2011; 59 (Suppl): S31-42.
Gadia R, Sihota R, Dada T et al. Current profile of secondary glaucomas. Indian J Ophthalmol. 2008; 56 (4): 285-289.
Khan AO. Genetics of primary glaucoma. Curr Opin Ophthalmol. 2011; 22 (5): 347-355.
Challa P. Genetics of adult glaucoma. Int Ophthalmol Clin. 2011; 51 (3): 37-51.
Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res. 2009; 88: 837-844.
Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008; 19 (2): 85-88.
Soliman Mahdy MA. Gene therapy in glaucoma-part I: Basic mechanisms and molecular genetics. Oman J Ophthalmol. 2010; 3 (1): 2-6.
Challa P. Glaucoma genetics. Int Ophthalmol Clin. 2008; 48 (4): 73-94.
Ray K, Mookherjee S. Molecular complexity of primary open angle glaucoma: current concepts. J Genet. 2009; 88: 451-467.
Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res. 2011; 93: 331-339.
Qu X, Zhou X, Zhou K et al. New mutation in the MYOC gene and its association with primary open-angle glaucoma in a Chinese family. Mol Biol Rep. 2010; 37: 255-261.
Mengkegale M, Fuse N, Miyazawa A et al. Presence of myocilin sequence variants in Japanese patients with open-angle glaucoma. Mol Vis. 2008; 14: 413-417.
Xiao Z, Meng Q, Tsai JC et al. A novel optineurin genetic mutation associated with open-angle glaucoma in a chinese family. Mol Vis. 2009; 15: 1649-1654.
Miyazawa A, Fuse N, Mengkegale M et al. Association between primary open-angle glaucoma and WDR36 DNA sequence variants in Japanese. Mol Vis. 2007; 13: 1912-1919.
Burdon KP, Hewitt AW, Mackey DA et al. Tag SNPs detect association of the CYP1B1 gene with primary open angle glaucoma. Mol Vis. 2010; 16: 2286-2293.
Vithana EN, Nongpiur ME, Venkataraman D et al. Identification of a novel mutation in the NTF4 gene that causes primary open-angle glaucoma in a Chinese population. Mol Vis. 2010; 16: 1640-1645.
Chen LJ, Ng TK, Fan AH et al. Evaluation of NTF-4 as a causative gene for primary open-angle glaucoma. Mol Vis. 2012; 18: 1763-1772.
Ricard CS, Tamm ER. Focus on molecules: myocilin/TIGR. Exp Eye Res. 2005; 81 (5): 501-502.
Tomarev SI, Nakaya N. Olfactomedin domain-containing proteins: posible mechanisms of action and functions in normal development and pathology. Mol Neurobiol. 2009; 40(2): 122-138.
Kanagavalli J, Pandaranayaka E, Krishnadas SR et al. A review of genetic and structural understanding of the role of myocilin in primary open angle glaucoma. Indian J Ophthalmol. 2004; 52 (4): 271-280.
Xie X, Zhou X, Qu X et al. Two novel myocilin mutations in a Chinese family with primary open-angle glaucoma. Mol Vis. 2008; 14: 1666-1672.
Menaa F, Braghini CA, Vasconcellos JP et al. Keeping an eye on myocilin: a complex molecule associated with primary open-angle glaucoma susceptibility. Molecules. 2011; 16: 5402-5421.
López-Martínez F, López-Garrido MP, Sánchez-Sánchez F et al. Role of MYOC and OPTN sequence variations in Spanish patients with primary open-angle glaucoma. Mol Vis. 2007; 13: 862-872.
Chalasani ML, Balasubramanian D, Swarup G. Focus on molecules: optineurin. Exp Eye Res. 2008; 87 (1): 1-2.
Chalasani ML, Swarup G, Balasubramanian D. Optineurin and its mutants: molecules associated with some forms of glaucoma. Ophthalmic Res. 2009; 42: 176-184.
Park BC, Tibudan M, Samaraweera M et al. Interaction between two glaucoma genes, optineurin and myocilin. Genes Cells. 2007; 12 (8): 969-979.
Sripriya S, Nirmaladevi J, George R et al. OPTN gene: profile of patients with glaucoma from India. Mol Vis. 2006; 12: 816-820.
Fuse N, Takahashi K, Akiyama H et al. Molecular genetic analysis of optineurin gene for primary open-angle and normal tension glaucoma in the Japanese population. J Glaucoma. 2004; 13: 299-303.
Chalasani ML, Balasubramanian D, Swarup G. Focus on molecules: Optineurin. Exp Eye Res. 2008; 87 (1): 1-2.
Chalasani ML, Radha V, Gupta V et al. A glaucoma-associated mutant of optineurin selectively induces death of retinal ganglion cells which is inhibited by antioxidants. Invest Ophthalmol Vis Sci. 2007; 48: 1607-1614.
Sudhakar C, Nagabhushana A, Jain N et al. NF-kappaB mediates tumor necrosis factor alpha-induced expression of optineurin, a negative regulator of NF-kappaB. PLoS One. 2009; 4: e5114.
Hauser MA, Allingham RR, Linkroum K et al. Distribution of WDR36 DNAsequence variants in patients with primary open-angle glaucoma. Invest Opthalmol Vis Sci. 2006; 47 (6): 2542-2546.
Fan BJ, Wang DY, Cheng CY et al. Different WDR36 mutation pattern IN Chinese patients with primary open-angle glaucoma. Mol Vis. 2009; 15: 646-653.
Hewitt AW, Dimasi DP, Mackey DA et al. A glaucoma case-control study of the WDR36 gen D658G sequence variant. Am J Ophtalmol. 2006; 142 (2): 324-325.
Skarie JM, Link BA. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. Hum Mol Genet. 2008; 17: 2474-2485.
Messina-Baas OM, González-Huerta LM, Chima-Galán C et al. Molecular analysis of the CYP1B1 gene: identification of novel truncating mutations in patients with primary congenital glaucoma. Ophthalmic Res. 2007; 39 (1): 17-23.
Stoilov I, Akarsu AN, Alozie I et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutation disrupting either the hinge region or the conserved core structure of cytochrome P450 1B1. Am J Hum Genet. 1998; 62 (3): 573-584.
Vincent AL, Billingsley G, Buys Y et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet. 2002; 70: 448-460.
Vasiliou V, Gonzalez FJ. Role of CYP1B1 in glaucoma. Annu Rev Pharmacol Toxicol. 2008; 48: 333-350.
Ip NY, Ibañez CF, Nye SH et al. Mammalian neurotrophin-4: Structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA. 1992; 89 (7): 3060-3064.
Liu Y, Liu W, Crooks K et al. No evidence of association of heterozygous NTF-4 mutations in patients with primary open-angle glaucoma. Am J Hum Genet. 2010; 86: 498-499.
Pasutto F, Matsumoto T, Mardin ChY et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet. 2009; 85 (4): 447-456.
Rao KN, Kaur I, Parikh RS et al. Variations in NTF-4, VAV2, and VAV3 genes are not involved with primary open angle and primary angle closure glaucomas in an Indian population. Invest Ophthalmol Vis Sci. 2010; 51 (10): 4937-4941.
Cheng L, Sapieha P, Kittlerova P et al. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci. 2002; 22: 3977-3986.
Berkemeier LR, Winslow JW, Kaplan DR et al. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991; 7: 857-866.
Burdon KP. Genome-wide association studies in the hunt for genes causing primary open-angle glaucoma: a review. Clin Experiment Ophthalmol. 2012; 40 (4): 358-363.
Thorleifsson G, Magnuson KP, Sulem P et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007; 317: 1397-1400.
Nakano M, Ikeda Y, Taniguchi T et al. Three susceptible loci asociated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci USA. 2009; 106: 12838-12842.
Fan BJ, Liu K, Wang DY et al. Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010; 51: 4110-4116.
Wiggs JL, Kang JH, Yaspan BL et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet. 2011; 20 (23): 4707-4713.
Osman W, Low SK, Takahashi A et al. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012; 21 (12): 2836-2842.
Blue Mountains Eye Study (BMES), Wellcome Trust Case Control Consortium 2 (WTCCC2). Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus. Hum Mol Genet. 2013; 22 (22): 4653-4660.
Nag A, Venturini C, Small KS et al. A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort. Hum Mol Genet. 2014; 23 (12): 3343-3348.