2014, Number 1
<< Back Next >>
Arch Neurocien 2014; 19 (1)
The blood brain barrier and the temporal lobe epilepsy
Solís H, López-Hernández E, Estrada FS
Language: Spanish
References: 41
Page: 42-47
PDF size: 128.33 Kb.
ABSTRACT
Blood-brain barrier (BBB) dysfunction has been shown to play an important role in epileptogenesis. Temporal lobe
epilepsy (TLE) is the most common type of partial complex seizure in adulthood. The main features of TLE are: (a)
the localization of seizure foci, particularly in the hippocampus, entorhinal cortex and amygdala; (b) the frequent
finding of an «initial precipitating injury» that precedes the appearance of TLE; (c) a seizure-free time interval following
the precipitating injury known as «latent period»; and (d) a high incidence of mesial or
Cornu Ammonis (CA) sclerosis,
i.e., an unilateral hippocampal lesion leading to atrophy, typically caused by neuronal loss and gliosis in the subiculum-
CA1 transition zone and the dentate hilus. It is not known how the BBB integrity changes during epileptogenesis
and whether alterations in BBB permeability can contribute to spontaneous seizure progression. To determine BBB
permeability in the pilocarpine model of TLE the Evans Blue (EB) was used as a macroscopically tracer experiments
of albumin extravasation. Also we have been evaluated the reactive gliosis by mean of the expression of the glial
fibrillary acidic protein (GFAP) after different time points of status
epilepticus (SE). In the present review, we provide
an overview about the function of the BBB in epilepsy and the potential role reactive gliosis may play in the
pathophysiology of epilepsy.
REFERENCES
Van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007;130:521-34.
Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem 2009; 111(2):291-314.
Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res 1996; 26:141-50.
McNamara. The neurobiological basis of epilepsy. TINS 1992; 15(10):357-9.
Salmenperä T, Kälviäinen R, Par tanen K, Pitkänen A. Hippocampal damage caused by seizures in temporal lobe epilepsy. Lancet 1998;351:35.
Sendrowski K, Sobaniec W. Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 2013;65(3):555-65.
Silva AV, Houzel JC, Croaro I, Márcia TYE, Stavale JN. Silva CR, et al. Granular cell dispersion and bilamination: two distinct histopathological patterns in epileptic hippocampi? Epileptic Disord 2007;9(4):438-42.
Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus: a critical perspective. Progress in Brain Research 2007; 163: 755-73.
Williamson PD, French JA, Thadani VM, Kim JH, Novelly RA, Spencer SS, et al. Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology. Ann Neurol 1993;34(6):781-7.
Plate KH, Wieser HG, Yasargil MG, Wiestler OD. Neuropathological findings in 224 patients with temporal lobe epilepsy. Acta Neuropathol 1993; 86 (5): 433-8.
Cersósimo R, Flesler S, Bartuluchi M, Soprano A, Pomata H, Caraballo R. Mesial temporal lobe epilepsy with hippocampal sclerosis: Study of 42 children. Seizure 2011;20:131-7.
De Lanerolle NC, Brines M, Williamson A, Kim, JH, Spencer DD. Neurotransmitters and their receptors in human temporal lobe epilepsy. Epilepsy Res Suppl 1992;7:235-50.
Koyama R, Yamada MK, Fujisawa S, Katoh-Semba R, Matsuki N, Ikegaya Y. Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus. J Neurosci 2004;24(33):7215-24.
Arabadzisz D, Antal K, Parpan F, Emri Z, Fritschy JM. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus. Exp Neurol 2005;194(1):76-90.
Roldán-Valadez E, Corona-Cedillo R, Cosme-Labarthe, J y Martínez-López M. Esclerosis temporal mesial en epilepsia del lóbulo temporal: evaluación cuantitativa con resonancia magnética 3.0 Tesl. Gac Méd Méx 2007;143(5):433-6.
Kasasbeh A, Hwang E.C, Steger-May K, Kathleen Bandt S, Oberhelman A, Limbrick D, et al. Association of magnetic resonance imaging identification of mesial temporal sclerosis with pathological diagnosis and surgical outcomes in children following epilepsy surger y. J Neurosurg Pediatrics 2012;9:552-61.
Ilbay G, Dalcik C, Yardimoglu M, Dalcik H, Ubeyli ED. The Blood-Brain Barrier and Epilepsy. Epilepsy - Histological, Electroencephalographic and Psychological Aspects, Dr. Dejan Stevanovic (Ed.), 2010. ISBN: 978-953-51-0082-9, InTech, Available from: http://www.intechopen.com/books/ epilepsy-histological-electroencephalographic-andpsychologicalaspects/ the-blood-brain-barrier-and-epilepsy
Cornford EM, Oldendorf WH. Epilepsy and the blood-brain barrier. Adv Neurol 1986; 44:787-812.
Ilbay G, Sahin D, Ates, N. Changes in blood-brain barrier permeability during hot water-induced seizures in rats. Neurol Sci 2003; 24:232-5.
Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia 2006;47(11);1761-74.
David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci 2009;29(34):10588-99.
Friedman A, Cacheaux LP, Ivens S, Kaufer D. Elucidating the Complex Interactions between Stress and Epileptogenic Pathways. Cardiovasc Psychiatry Neurol 2011;461263.
Kovacs, R, Heinemann, U. and Steinhäuser, C. Mechanisms underlying blood–brain barrier dysfunction in brain pathology and epileptogenesis: Role of astroglia. Epilepsia 2012; 53(Suppl. 6):53-9.
Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. TGF-b receptormediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 2007; 130: 535-47.
Reynolds DS, Morton AJ. Changes in blood–brain barrier permeability following neurotoxic lesions of rat brain can be visualised with trypan blue. J Neurosci Methods 1998;79:115-21.
Persson L, Hansson HA, Sourander P. Extravasation, Spread and Cellular Uptake of Evans Blue-Labelled Albumin around a Reproducible Small Stab-Wound in the Rat Brain. Act Neuropath (Berl.) 1976; 34:125-36.
Kozler P, Pokorny J. Altered blood-brain barrier permeability and its effect on the distribution of evans blue and sodium fluorescein in the rat brain applied by intracarotid injection. Physiol. Res 2003; 52: 607-14.
Nag S. Blood-Brain Barrier Permeability Using Tracers and Immunohistochemistry. En: methods in molecular medicine. 2003; 89: The Blood–Brain Barrier: Biology and Research Protocols Edited by: S. Nag Humana Press Inc, Totowa, NJ. Disponible en: http://www.springerprotocols.com/Full/doi/ 10.1385/1-59259-419-0:133?encCode=U0VOOjMzMTow LTkxNC05NTI5NS0x&tokenString=XIGpmyctmJZ6Z6n+cNk44Q==
Kaya M. and Ahishali B. Assessment of Permeability in Barrier Type of Endothelium in Brain Using Tracers: Evans Blue, Sodium Fluorescein, and Horseradish Peroxidase. En: Kursad Turksen (ed.) Permeability Barrier: Methods and Protocols, Methods in Molecular Biology, 2011; 369-382. Disponible en: http://www.springerprotocols.com/Abstract/doi/ 10.1007/978-1-61779-191-8_25?verPrint=print
Sahin D, Ilbay G, Ates N. Changes in the blood-brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazoleinduced seizures in rats. Pharmacol Res 2003; 48:69-73.
Johansson B, Nilsson B. The pathophysiology of the bloodbrain barrier dysfunction induced by severe hypercapnia and by epileptic brain activity. Acta Neuropath (Berl) 1977;38:153-8.
Manley NC, Bertrand AA, Kinney KS, Hing TC, Sapolsky, RM. Characterization of monocyte chemoattractant protein- 1expression following a kainate model of status epilepticus. Brain Res 2007;1182:138-43.
Üzüm G, Sarper Diler A, Ziya Ziylan Y. Chronic nicotine pretreatment protects the blood-brain barrier against nicotineinduced seizures in the rat. Pharmacol Res 1999;40(3):263-9.
Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 1983;59(3):305-22.
Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SL, Kleinrok Z, Turski LW. Limbic seizures produced by pilocarpine in rats: Behavioral, electroencephalographic and neuropathological study. Behavioural Brain Res 1983; 9: 315-35.
Cavalheiro EA. The pilocarpine model of epilepsy. Ital J Neurol Sci 1995;16(1-2): 33-7.
Dubé C, Boyet S, Marescaux C, Nehlig A. Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult Rat. Exp Neurol 2000; 162(1):146-57.
Estrada SF, Hernández SV, López-Hernández E, Corona- Morales AA, Solís H, Escobar A, et al. Glial activation in a pilocarpine rat model for epileptogenesis: a morphometric and quantitative analysis. Neurosci Lett 2012; 514:51-6.
Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 2008; 49 (Suppl. 2):33-41.
Conti F. Compilador. Fisiología médica. 1a. Ediciónn en Español. McGraw-Hill Interamericana Eds, 2010. Capìtulo 11: Sistema nervioso: componentes y organización.
Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Bloodbrain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 2012;53 Suppl 6:37-44.