2014, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2014; 19 (1)
Aspectos funcionales de la metalotioneina en el sistema nervioso central
Juárez-Rebollar D, Méndez-Armenta M
Idioma: Español
Referencias bibliográficas: 71
Paginas: 34-41
Archivo PDF: 108.01 Kb.
RESUMEN
Las metalotioneinas (MT-I, MT-II, MT-III y MT-IV), constituyen una superfamilia de proteínas, ricas en cisteína capaz
de unir metales a su estructura. En el sistema nervioso la MT-I y II ha sido localizada a lo largo de la medula espinal
y cerebro, principalmente en los astrocitos, mientras que la MT-III sólo ha sido localizada en las neuronas. Su función
principal ha sido con frecuencia ser la encargada de mantener la homeostasis del zinc intracelular, y la detoxificación
de metales pesados, es una proteína relacionada al estrés, capaz de proteger de los radicales libres generados
por el estrés oxidante. La participación de esta proteína en el proceso de inflamación generado por estrés oxidante
también ha sido reportada; por otro lado la MT-III se ha visto involucrada en eventos de neuromodulación; así como,
en la patogénesis de enfermedades neurodegenerativas como Alzheimer y Parkinson. Esta revisión presenta evidencia
acerca de los mecanismos celulares de la MT y cuál es su papel en procesos fisiológicos normales y patológicos
dentro del sistema nervioso central.
REFERENCIAS (EN ESTE ARTÍCULO)
Magoshes M, Valle BL. A cadmium protein from equine kidney cortex. J Am Chem Soc 1957;79;4813-4.
Kagi JH, Valle BL. Metallothionein: a cadmium and zinccontaining protein from equine renal cortex. J Biol Chem 1961;236:2435-42
Ebadi M. The prescence and functions of zinc binding proteins in developing and mature brains. Neurol Neurobiol 1984; 11A,39-7.
West A., Hidalgo J, Eddins D, Levin ED, Aschner M. Metallothionein in the central ner vous system: roles in protection, regeneration and cognition. Neurotoxicology 2008; 489-503.
Rigby EK, Stillman MJ. Structural studies of metal-free metallothionein. Biochem Biophys Res Comm 2004;1271-8.
Ghoshal K, Jacob ST. Regulation of metallothionein gene expression. Prog Nucleic Acid Res Mol Biol 2001; 66:357-84.
Vasak M. Advances in metallothionein structure and functions. J Trace Elem Med Biol 1997; 19:13-7.
Blindauer C. Bacterial metallothioneins: past, present, and questions for the future. JBIC Journal of Biological Inorganic Chemistry 2011; 16:1011-24.
Shestivska V, Adam V, Prasek J, Macek T, Mackova M, Havel L. Investigation of the antioxidant properties of metallothionein in transgenic tobacco plants using voltammetry at a carbon paste electrode. Int J Electrochem Sci 2011;6:2869-83.
Castro M, Mendez-Armenta. Heavy metals: Implications associated to fish consumption. ETAP 2008; 263-71.
Trinchella F, Esposito M, Scudiero R. Metallothionein primary structure in amphibians: insights from comparative evolutionary analysis in vertebrates. Comptes Rendus Biologies 2012; 335: 480-7.
Hag F, Mahoney M, Koroptnick J. Signalling events for metallothionein induction. Mutation Res 2003; 533: 211-26.
Davis S, Cousins R. Metallothionein expression in animals: A phisyological Persepctive on function. J Nutr 2000; 130: 1085-8.
Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionen: the multipurpose protein. Cell Mol Life Sci 2002; 59:627-46.
Hidalgo J, Aschner M, Zatta P, Vasak M. Roles of the metallothionein family of the proteins in the central nerbous system. Brain Res Bull 2001;55:133-45.
Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W. The transcription factor MTF-1 is essential for vassal and heavy metal-induced metallothionein gene expression. EMBO J 1994; 13:2870-5.
Watabe M, Gross S, Lawyer C, Brewer G, Mashimo T, Watabe K. Sequence and functional analysis of the 5’ flanking region of the mouse growth inhibitory factor gene. Cell Mol Neurobiol 1997; 17:235-43.
Chapman GA, Kay J, Kille P. Structural and function analysis of the rat metallothionein III genomic locus. Biochim Biophys Acta 1999;1445:321-9.
Outten CE, O’Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasiss. Science 2001; 292:2488-92.
Ye B, Maret W, Valle BL. Zinc metallothionein imported into the liver mithocondria modulates respiration. PNAS 2001; 98:2317-22.
Cherian MG, Apostolova MD. Nuclear localization of metallothionein during cell proliferation and differentiation. Cell Mol Biol 2000;46:347-56.
Jacob C, Maret W, Valle BL. Coordination dynamics of biological zinc clusters in metallothionein and in the DNA-binding domain of the trasncripction factor Gal 4. PNAS 1998; 95:3489-94.
Jiang LJ, Maret W, Valle BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted, sorbitol dehydrogenase. PNAS 1998; 95:3483-8.
Kang J. Metallothioenin Redox Cycle Function. Exp Biol Med 2006;231:1459-67.
Sato M, Bremner I.Oxygen free radicals and metallothionein. Free Rad Biol Med 1993; 14: 325-37.
Vallee BL, Falchuk KN. The biochemical basis of zinc physiology. Physiol Res 1993; 73:79-118.
Ebadi M, Leuschen P, El Refaey H, Hamada FM, Rojas P. The antioxidant properties of zinc and metallothionein. Neurochem Int 1996; 29:159-66.
Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 2009; 238: 215-20.
Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Fattoretti P, Berton-Feddari C y cols. Zinc-bounde metallothioneins as potential biological markers of ageing. Brain Res Bull 2001; 55:147-153.
Klassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 1999; 39, 267-94.
Inoue K, Takano H, Shimada A, Satoh M. Metallothionein as an anti-inflammatory mediator. Media Inflam 2009; 2009:101659.
Nishimura N, Nishimura H, Ghaffar A, Tohyama C. Localization of metallothionein in the brain of rat and mouse. J Histochem 1992; 40: 309-15.
Holloway AF, Stennard FA, West AK. Human metallothionein gene MT1L mRNA is present in several human tissues but is unlikely to produce a metallothionein protein. FEBS Lett 1997; 404: 41-4.
Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE. Metallothionein III is reduced in Alzheimer’s disease. Brain Res 2001; 894:37-45.
Poulsen CB, Penkowa M, Borup R, Nielsen FC, Caceres M, Quintana A, et al. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis. J Neurochem 2005; 92: 417-32.
Quintana A, Giralt M, Rojas S, Penkowa M, Campbell IL, Hidalgo J, et al. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res 2005; 82: 701-16.
Penkowa M, Camats J, Giralt M, Molinero A, Hernandez J, Carrasco J, et al. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression. Glia 2003; 42: 287-306.
Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The gorwth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein like protein. Neuron 1991;7:337-47.
Romero-Isart N, Jensen LT, Zerbe O, et al. Engineering of metallothionein- 3 neuroinhibitory activity into the inactive isoform metallothionein-1. J Biol Chem 2002;277:37023-8.
Wang H, Zhang Q, Cai B, Li H, Sze K, Huangc Z, et al. Solution structure and dynamics of human metallothionein-3 (MT-3). FEBS 2006;795-800.
Tokuda, Ono S, Ishige K, Naganuma A, Ito Y, Suzuki T. Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology 2007;229:33-41.
Blaauwgeers HG, Anwar Chand M, van den Berg FM, Vianney de Jong JM, Troost D. Expression of different metallothionein messenger ribonucleic acids in motor cortex, spinal cord and liver from patients with amyotrophic lateral sclerosis. J Neurol Sci 1996; 142: 39-44.
Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE. Metallothionein III is reduced in Alzheimer’s disease. Brain Res 2001; 894: 37-45.
Zambenedetti P A, West A K, Vickers JC. Increased density of metallothionein I/II-immunopositive cortical glial cells in the early stages of Alzheimer’s disease. Neurobiol Dis 1998; 5:349-56;
Trendelenburg G, Prass K, Priller J, Kapinya K, Polley A, Muselmann C. Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral isquemia. J Neurosci 2002;22:5879-88.
Erickson JC, Hollopeter G, Thomas S, Froelick, Palmiter R. Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J Neurosc 1997;17:1271-81.
Campagne M, Thibodeaux H, Van Bruggen N, Cairns B, Gerlai R, Palmer J, et al. Evidence for a protective role of metallothionein- I in focal cerebral isquemia. PNAS 1999;96:12870-75.
Wakida K, Shimazawa M, Hozumi I, Satoh M, Nagase H, Inuzuka T, et al. Neuroscience Neuroprotective effect of erythropoietin, and role of metallothionein-1 and -2, in permanent focal cerebral ischemia. Neuroscience 2007;148:105-14.
Wolff N, Abuhamed M, Verroust P, Thevenod F. Megalindependent internalization of cadmium-metallothionen and cytotoxicity in cultured retinal proximal tubule cells. J Pharmacol Exp Ther 2006;318:782-91.
Chung R, Vickers J, Chuah M, West A. Metallothionein-IIA promotes initial neurite elongation and postinjur y reactive neurite growth and facilitates healing after focal cortical brain injury. J Neurosci 2003;23:3336-42.
Chung R, Penkowa M, Dittmann J, King C, Bartlett C, Asmussen J, et al. Redefining the role of metallothionein within the injured brain extracellular metallothioneins play an important role in the astrocyte-neuron response to injur y. JBC 2008; 283:15349-58.
Dittman J, Fung S, Vickers M, Chung M, Chuah M, West A. Metallothionein biology in the ageing and neurodegenerative brain. Neurotoxicity Res 2005;7:87-93.
Suzuki Y, Apostolova M, Cherian G. Astrocyte cultures from transgenic mice to study the role of metallothionein in cytotoxicity of tert-butyl hydroperoxide. Toxicology 2000; 145: 51–62.
Emre M, Aarsland D, Albanese A, Byrne J, Deuschl G, De Deyn. Rivastigmine for Dementia Associated with Parkinson’s Disease. N Engl J Med 2004;351:2509-18.
Surmeier J, Guzman J, Sanchez-Padilla J, Schumacker P. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 2011; 198: 221-31.
Spillantini M, Crowther R, Jakes R, Hasegawa M, Goedert M. á-synuclein in filamentous inclusions of lewy bodies from parkinson’s disease and dementia with lewy bodies. PNAS 1998; 95: 6469-73.
Ebadi M, Sharma S. Metallothioneins 1 and 2 Attenuate Peroxynitrite-Induced Oxidative Stress in Parkinson Disease. Exp Biol Med 2006; 231:1576-83.
Crane L . New functions for coenzyme Q. Protoplasma 2000; 213:127-33.
Ebadi M, Brown-Borg H, Muralikrishnan D, Shavali S, Eken J, Sangchot P, et al. Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson’s disease. Proc West Pharmacol Soc 2002; 45: 36-8.
Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 2001; 8:721-38.
Salmon DP, Thomas RG, Pay MM, Both A, Hofstetter CR, Thal LJ, et al. Alzheimer´s disease can be accurately diagnosed in very midly impaired individuals. Neurology 2002;99:1022-8.
Zambenedetti P, Giordano R, Zatta P. Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer’s disease. J Chem Neuroanat 1998;15:21-6.
Haung Y, Lukiw W, Bergeron C, Niznik B, Fraser P. Metallothionein III is reduced in Alzheimer’s disease. Brain Research 2001;894:37-45.
Nordberg M, Nordberg G. Toxicological aspects of metallothionein. Cell Mol Biol 2000; 46: 451-63.
Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 2009; 238: 209-14.
Mèndez-Armenta M, Rìos C. Cadmium neurotoxicity. ETAP 2007; 23: 350-8.
Mendez-Armenta M, Barroso-Moguel R, Villeda-Hernández J, Nava-Ruiz C, Rios C. Hstopathological alterations in brain regions of rats after perinatal combined treated with cadmium dexamethasone. Toxicology 2001; 161:189-99.
Thatcher RW, Lester ML, McAlaster R, Horts R. Effects of low levels of cadmium and lead on cognitive function in children. Arch Environ Health 1982; 37:159-66.
Hart RP, Rose CS, Hamer RM. Neuropsychological effects of occupational exposure to cadmium. J Clin Experim Neuropsych 1989; 11: 933-43.
Viaene MK, Roels HA, Leenders J, De Groof SLS, Lison D, Hasschelein R. Cadmium a possible etiological factor in peripheral polyneuropathy. Neurotoxicology 1999;20:7-16.
Viaene MK, Masschelein R, Leenders J, Groof MDe, Swerts LJVC, Roels HA. Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 2000;57:19-27.