2012, Number 1
<< Back Next >>
RCU 2012; 1 (1)
El cáncer de próstata resistente a castración. Mecanismos de progresión y nuevos tratamientos
Moro SA, Laborí CC, Bouzó LA, González HJ
Language: Spanish
References: 53
Page: 106-122
PDF size: 427.28 Kb.
ABSTRACT
Prostate cancer is a major health problem in Cuba and other Western countries. Understanding of the key
role that androgens play in the physiology of the prostate guided to development of androgens blockade as
option for treatment of locally advanced disease with 80 % of responding patients. However, resistance to this therapy develops within 1233 months. This stage of prostate cancer is called castrationresistant prostate cancer (CRPC), and
symptomatic CRPC is associated with poor prognosis and a survival time between 18-24 months. Even in the
presence of castration levels of circulating androgens, these tumors are still dependent on a functional
androgen receptor (AR), and several molecular mechanisms have been proposed to explain this phenomenon. These include: 1) AR overexpression/amplification; 2) AR mutations; 3) Increased local production of androgen by prostate cells; 4) activation of AR by non steroid
ligands; 5) Altered expression of AR co-activators or co-repressors; 6) Proteolytic processing of AR to generate an androgen independent isoform; 7) Effect of microRNAs.
Treatments currently approved for patients with CRPC include
mitoxantrone; radiopharmaceuticals, zoledronic acid, docetaxel and sipuleucel T. Here, we describe new drugs which could be interesting for our urologists.
REFERENCES
Anuario Estadístico de Salud, 2009, MINSAP, Cuba.
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J. Clin. 2010;60:277-300.
Devlin HL, Mudryj M. Progression of prostate cancer: multiple pathways to androgen independence. Cancer Letters. 2009; 274(2);1771-86.
Hussain M, Tangen CM, Higano C, Schelhammer PF, Faulkner J, Crawford ED, et al. Absolute Prostate-Specific Antigen Value After Androgen Deprivation Is a Strong Independent Predictor of Survival in New Metastatic Prostate Cancer: Data From Southwest Oncology Group Trial 9346 (INT-0162) J Clin Oncol. 2006;24:3984-3990.
Scher HI, Sawyers C.J. Biology of Progressive, Castration-Resistant Prostate Cancer: Directed Therapies Targeting the Androgen-Receptor Signaling Axis. J Clin Oncol. 2005;23:8253-8261.
Scher HI, Halabi S, Tannock I, Morris M, Sternberg C.N, Carducci M.A et al. Design and End Points of Clinical Trials for Patients With Progressive Prostate Cancer and Castrate Levels of Testosterone: Recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26:1148-1159.
Feldmann B.J, Feldmann D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34-45.
Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res. 2009;69(10):4434-4442.
Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genetics 1995;9(4):401-406.
Ford OH III, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J. Urol. 2003;170:1817-21.
Linja MJ, Savinainen KJ, Saramaki OR, Tammela TLJ, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61(9):3550-3555.
Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997;57(2):314-319.
Donkena KV, Yuan H, Young CY. Recent advances in understanding hormonal therapy resistant prostate cancer. Curr Cancer Drug Targets. 2010;10(4):402-10.
Gottlieb B, Beitel LK, Wu JH, Trifiro M. The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat. 2004;23:527-33.
Heinlein CA, Chan C. Androgen receptor in prostate cancer. Endocr Rev, 2004;25:276-308.
Linja MJ, Visakorpi T. Alterations in AR and prostate cancer.J Steroid Biochem Mol Biol. 2004;92:255-264.
Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol.1993;7:1541-1550.
Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 1990;173:534-540.
Yoshida T, Kinoshita H, Segawa T. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res, 2005; 65(21):9611-9616.
Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B, Balk SP. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 1999; 59(11):2511-2515.
Labrie F, Bélanger A, Dupont A, Luu-The V, Simard J, Labrie C. Science behind total androgen blockade: from gene to combination therapy. Clin Invest Med. 1993;16(6):475-492.
Mohler JL, Gregory CW, Ford OH 3rd, Kim D, Weaver CM, Petrusz P, Wilson EM, French FS. The androgen axis in recurrent prostate cancer. Clin Cancer Res. 2004;10(2):440-448.
Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. Increased expression of genes converting adrenal androgens to testosterone in androgenindependent prostate cancer. Cancer Res 2006;66:2815.
Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68(11):4447-4454.
Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008;68:6407.
Culig, Z. Cytokine disbalance in common human cancers. Biochim Biophys Acta. 2011;1813(2):308-314.
Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010;16(12):1414-1420.
Hernes E, Fossa SD, Berner A, Otnes B, Nesland JM. Expression of the EGFR family in prostate carcinoma before and during androgen-independence. Br J Cancer 2004; 90:449-54.
Bartlett JM, Brawley D, Grigor K, Munro AF, Dunne B, Edwards J. Type I receptor tyrosine kinases are associated with hormone escape in prostate cancer. J Pathol 2005; 205:522-529.
Schweizer L, Rizzo CA, Spires TE, Platero JS, Wu Q, Lin TA. et al. The androgen receptor can signal through Wnt/â-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 2008;9:4.
Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy, European Urology. 2004;45:586-592.
Amorino GP y Parsons SJ. Neuroendocrine cells in prostate cancer. Critical Reviews in Eukaryotic Gene Expression. 2004;14:287-300.
Bennett HL, Fleming JT, O'Prey J, Ryan KM, Leung HY. Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells. Cell Death Dis. 2010;1(9):e72.
Tan SS, Ahmad I, Bennett HL, Singh L, Nixon C, Seywright M et al. GRP78 up-regulation is associated with androgen receptor status, Hsp70-Hsp90 client proteins and castrate-resistant prostate cancer. J Pathol. 2011;223(1):81-87.
Craft, N., Shostak, Y., Carey, M. & Sawyers, C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Med. 1999;5:280-285.
Hsu FN, Yang MS, Lin E, Tseng CF, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. American Journal of Physiology-Endocrinology And Metabolism. 2011;300(5):E902-E908.
Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, and Sawyers CL. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell. 2004;6:517-527.
Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell. 2006;10(4):309-319
Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer. 2007;120(4):719-33.
Yuan X, Balk SP. Mechanisms mediating androgen receptor reactivation after castration. Urol Oncol. 2009;27(1):36-41.
41.Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006;20(11):1405-28.
Welsbie DS, Xu J, Chen Y, Borsu L, Scher HI, Rosen N, Sawyers CL. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 2009;69(3):958-966.
Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469-77.
Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16-22.
Sun T, Wang Q, Balk S, Brown M, Gwo-Shu ML, Kantoff P. Sun T, Wang Q, Balk S, Brown M, Gwo-Shu ML, Kantoff P. The role of microRNA-221 and -222 in Androgen-independent Prostate Cancer Cell lines. Cancer Res. 2009;69(8):3356-3363.
Ribas J, Ni X, Haffner M, Wentzel EA, Hassanzadeh Salmasi A, Chowdhury WH. miR-21: An Androgen ReceptorRegulated MicroRNA that Promotes Hormone-Dependent and Hormone-Independent Prostate Cancer Growth. Cancer Res. 2009;69(18):7165-7169.
Vishnu P, Tan WW. Update on options for treatment of metastatic castration-resistant prostate cancer. Onco Targets Ther. 2010;3:39-51.
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502-1512.
Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351:1513-1520.
Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147-54.
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411-22.
Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375(9724):1437-1446.
Pal SK, Sartor O. Phase III data for abiraterone in an evolving landscape for castration-resistant prostate cancer. Maturitas. 2011;68(2):103-105.