2014, Number 1
<< Back Next >>
Biotecnol Apl 2014; 31 (1)
Potential applications of Bacillus subtilis strain SR/B-16 for the control of phytopathogenic fungi in economically relevant crops
Orberá TM, Serrat MJ, Ortega E
Language: Spanish
References: 53
Page: 7-12
PDF size: 307.24 Kb.
ABSTRACT
Countries all over the world have experienced the negative impact that phytopathogenic fungi and
oomycetes
have on food security. Controlling these organisms remains a daunting task due to their genetic plasticity and the large temporal and geographic variability of their populations, which enables them to evolve and develop pesticide-resistant variants despite the considerable effort spent on developing disease-resistant varieties. One strategy for the control of plant diseases is that of biological control using natural enemies of these pests, such as rhizobacteria of the
Bacillus and
Pseudomonas genera.
Bacillus subtilis, in particular, is characterized by the extracellular secretion of a number of antibiotics, microbial lipopeptides and hydrolytic enzymes such as chitinases and proteases that can be harnessed for the control of phytopathogens. The present review describes and
examines the advantages and potential applications of
B. subtilis strain SR/B-16, originally isolated from the rhizosphere of organically farmed ornamental plants, for the biological control of fungal phytopathogens attacking
commercially important crops.
In vitro challenging of phytopathogenic fungi with SR/B-16 has demonstrated that
the antifungal activity of the latter has a broad spectrum, due to the secretion of metabolites producing structural
and ultrastructural changes on the fungal cell. In addition, strain SR/B-16 efficiently colonizes the rhizosphere, which confers it advantages as a potential biopesticide and biofertilizer. Therefore, this microorganism may promote
plant growth both by increasing the availability of nitrogen and phosphorous in agricultural soils and by controlling fungal phytopathogens.
REFERENCES
Strange NR, Scott PR. Plant disease: A threat to global food security. Annu Rev Phytopathol. 2005;43:83-116.
Porta-Puglia A, Vannacci G. Fungal plant diseases in Europe and in the Mediterranean Basin. In: Lal R, editor. Agricultural Sciences. Oxford: Eolss Publishers; 2012.
Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol. 2004;19(10):535-44.
Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 2005;71(9):4951-9.
Singh PK, Chittpurna, Ashish, Sharma V, Patil PB, Korpole S. Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. Strain GI-9. PLoS One. 2012;7(3):e31498.
Lamsal K, Kim SW, Kim YS, Lee YS. Application of rhizobacteria for plant growth promotion effect and biocontrol of Anthracnose caused by Colletotrichum acutatum on Pepper. Mycobiology. 2012;40(4):244-51.
Pal KK, McSppaden Gardener B. Biological Control of Plant Pathogens. Plant Health Instructor. 2006; doi: 10.1094/ PHI-A-2006-1117-02.
Fernando WGD, Nakkeeran S, Zhang D. Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA, editor. PGPR: Biocontrol and biofertilization. Dordrecht: Springer Science; 2005. p. 67-109.
Zhang SM, Wang YX, Meng LQ, Li J, Zhao XY, Cao X, et al. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. Afr J Microbiol Res. 2012;6(8):1747-55.
Basurto-Cadena MG, Vazquez-Arista M, García-Jiménez J, Salcedo-Hernández R, Bideshi DK, Barbosa-Carona JE. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci World J. 2012;2012:384978.
Machado AP, Anzai M, Fischman O. Bacillus subtilis induces morphological changes in Fonsecaeae predosoi in “in vitro” resulting in more resistant fungal forms “in vivo”. J Venom Anim Toxins Incl Trop Dis. 2010;16(4):592-8.
Islam MR, Jeong YT, Lee YS, Song CH. Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Microbiology. 2012;40(1):59-66.
Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol. 2012;194(11):893-9.
Martínez-Absalon SC, Orozco- Mosqueda MC, Martínez-Pacheco MM, Farías-Rodriguez R, Govindappa M, Santoyo G. Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. Gen Mol Res. 2012;11(3): 2665-73.
Nakkeran S, Fernando DWG, Siddiqui ZA. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA, editor. PGPR: Biocontrol and biofertilization. Dordrecht: Springer Science; 2005. p. 257-96.
do Vale M, Seldin L, de Araujo FF, de Lima R. Plant Growth Promoting Rhizobacteria: Fundamentals and Applications. In: Maheshwari DK, editor. Plant growth and health promoting bacteria. Heidelberg: Springer; 2010. p. 21-43.
Ravensberg WJ. Experiences with biocontrol agents in Europe: Commercial and regulatory overview. In: 7th International Workshop on Plant Growth Promoting Rhizobacteria: Program and Abstract Book; Noordwijkerhout, The Netherlands; 2006. p. 15.
Borris R, Bochow H, Junge H. Use of Bacillus subtilis/amyloliquefaciens FZB strains for plant growth promotion and biocontrol. In: 7th International Workshop on Plant Growth Promoting Rhizobacteria: Program and Abstract Book; Noordwijkerhout, The Netherlands; 2006. p. 15.
Kumar A, Prakash A, Johri BN. Bacillus as PGPR in Crop Ecosystem. In: Maheshwari DK, editor. Bacteria in agrobiology: Crop ecosystems. Berlin: Springer; 2011. p. 37-59.
Orberá Ratón TM, Serrat Díaz MJ, González Giro Z. Potencialidades de bacterias aerobias formadoras de endosporas para el biocontrol en plantas ornamentales. Fitosanidad. 2009;13(2):95-100.
Orberá Ratón T, Gonzalez Giro Z, Serrat Diaz M. 16S rDNA partial sequence from aerobic endospore forming bacteria isolated from ornamental plants rhizosphere. 2010 Aug 30 [cited 2013 Aug 13]. Available from: http://www.ncbi.nlm.nih. gov/nuccore/HQ025917
Orberá Ratón T, González Giro Z, Serrat Díaz M, Rodríguez Pérez S. In vitro growth inhibition of Curvularia gudauskasii by Bacillus subtilis. Ann Microbiol. 2012;62:545-51.
Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS 3rd, Ryu CM. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol. 2011; 77(5):1548-55.
Orberá Ratón TM. Bacterias rizosféricas de la clase Bacilli con potencialidades para la estimulación del crecimiento vegetal y el control de hongos fitopatógenos [disertation]. Oriente University; 2012.
Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol. 2005;69(1):29-38.
Deora A, Hatano E, Tahara S, Hashidoko Y. Inhibitory effects of furanone metabolites of a rhizobacterium, Pseudomonas jessenii, on phytopathogenic Aphanomyces cochlioides and Pythium aphanidermatum. Plant Pathol. 2010;59(1):84-99.
Mendgen K, Hahn M, Deising H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol. 1996;34:364-86.
Bolsover SR, Hyams JS, Shephard EA, White HA, Wiedemann CG, editors. Cell Biology: A short course. 2nd ed. Hoboken: John Wiley & Sons, Inc.; 2004.
Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial- fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev. 2011;75(4):583-609.
Fravel D, Olivain C, Alabouvette C. Fusarium oxysporum and its biocontrol. New Phytol. 2003;157:493-502.
Brodeur J. Host specificity in biological control: insights from opportunistic pathogens. Evol Appl. 2012;5(5):470-80.
Azor M, Cano J, Gené J, Guarro J. High genetic diversity and poor in vitro response to antifungals of clinical strains of Fusarium oxysporum. J Antimicrob Chemother. 2009;63(6):1152-5.
Blackwell M, Spatafora JW. Fungi and Their Allies. In: Mueller GM, Bills GF, Foster M, editors. Biodiversity of Fungi: Standard Methods for Inventory and Monitoring. New York: Academic Press; 2004. p. 7-21.
Goody J. The culture of flowers. Cambridge: Cambridge University Press; 1993.
Sorensen PD. Revision of the genus Dahlia (Compositae, Heliantheae- Coreopsidinae). Rhodora. 1969;71:309-416.
World Checklist of Selected Plant Families: Royal Botanic Gardens [Internet]. Richmond: Board of Trustees of the Royal Botanic Gardens, Kew; c2013 [cited 2013 Aug 13]. Available from: http://apps.kew. org/wcsp/home.do
Hussain A, Khan ZI, Ghafoor MY, Ashraf M, Parveen R, Rashid MH. Sugarcane, sugar metabolism and some abiotic stresses. Inter J Agric Biol. 2004;6(4):732-42.
Matar SM, El-Kazzaz SA, Wagih EE, El-Diwany AI, Moustafa HE, Abo-Zaib GA, et al. Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi, I. Biotechnology. 2009;8(1):53-61.
Li J, Yang Q, Zhao LH, Zhang SM, Wang YX, Zhao XY. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B. 2009;10(4):264-72.
Yacizi S, Yanar Y, Karaman I. Evaluation of bacteria for biological control of early blight disease of tomato. Afr J Biotechnol. 2011;10(9):1573-7.
Peterson RKD, Higley LG, editors. Biotic stress and yield Loss. New York: CRC Press; 2001.
Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 2010;11(7):R73.
Lugtenberg B, Kamilova F. Plantgrowth- promoting rhizobacteria. Ann Rev Microbiol. 2009;63:541-56.
Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8(1):15-25.
Kamoun SA. Catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol. 2006;44:41-60.
Jin F, Ding Y, Ding W, Reddy MS, Dilantha WG, Du B. Genetic diversity and phylogeny of antagonistic bacteria against Phytophthora nicotianae isolated from tobacco rhizosphere. Int J Mol Sci. 2011;12(5):3055-71.
Ongena M, Jaques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115-25.
Schmidt TR, Scott EJ II, Dyer DW. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics. 2011;12:430-46.
Malusá E, Sas-Paszt L, Ciecielska J. Technologies for beneficial microorganism inocula used as biofertilizers. ScientificWorldJournal. 2012;2012:491206.
Chakraborty S, Tiedemann AV, Teng PS. Climate change: potential impact on plant diseases. Environ Poll. 2000;108(3):317-26.
Vurro M, Bonciani B, Vannacci G. Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Sec. 2010;2(2):113-32.
Mousa WK, Raizada MN. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol. 2013;4:65.
Beneduzi A, Ambrosini A, Passaglia MP. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Gen Mol Biol. 2012; 35(4 Suppl):1044-51.