2013, Number 2
<< Back Next >>
Biotecnol Apl 2013; 30 (2)
Evaluation of four viroid RNA extraction methods for the molecular diagnosis of CEVd in Citrus limon using RT-PCR, Dot blot and Northern blot
Umaña R, Pritsch C, Arbiza JR, Rivas F, Pagliano G
Language: Spanish
References: 39
Page: 125-136
PDF size: 420.92 Kb.
ABSTRACT
An efficient method for RNA extraction that leads to RNA high yield and purity is a technical issue relevant for development and optimization of molecular diagnostic methods aimed to detect viroid infections in citrus varieties. Residual contaminants may affect RNA detection depending on the molecular diagnosis approaches. This condition can be evaluated through RNA absorption spectrum analysis. Functionally, it is assessed through observation of RT-PCR amplification products and
Northern blot and
Dot-blot signal intensities, displaying levels of analytical response/sensitivity. Four RNA extraction methods were evaluated to determine their effects on the capacity to detect viroid CEVd presence/absence in
Citrus limon through four molecular diagnostic approaches: 1) conventional viroid extraction (CVE); 2) phenol/guanidine thiocyanate (PGT), 3) SDS/potassium acetate (SPA); and 4)
formaldehyde/ SSC (FS). Phloem tissue quantifications showed values between 7500 ng/µL and 1200 ng/µL and ranged 1.3-2.0 OD260/280. Evaluations through RT-PCR showed the expected amplifications of the entire CEVd genome, but
erratic scenarios still remained. Non-radioactive probe hybridization techniques revealed high intensity signals (132 RU) for infected tissue, by using the CVE method, and a positivity cut-off for the presence of infection was established (78 RU). Nevertheless, molecular hybridization tools can jeopardize the diagnosis due to the thoroughness of the protocol and the RNA template conditions. The diagnostic ability of the association of Northern blot with CVE viroid extraction analyses as starting point was evidenced for successful detection, among the molecular methods tested.
REFERENCES
Flores R. A naked plant-specifi c RNA ten-fold smaller than the smallest known viral RNA: the viroid. C R Acad Sci III. 2001; 324(10):943-52.
Flores R, Randles JW, Bar-Joseph M, Diener TO. Viroids. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carsten EB, Estes MK, Lemon SM, et al., editors. Virus taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2000. p. 1009-24.
Palacio A, Foissac X, Duran-Vila N. Indexing of citrus viroids by imprint hybridisation. Eur J Plant Pathol. 1999;105(9): 897-903.
Barbosa CJ, Pina JA, Navarro L, Duran- Vila N. Replication/accumulation and symptom expression of citrus viroids on some species of citrus and related genera. In: Duran-Vila N, Milne RG, Da Graça JV, editors. Proceedings XV International Conference of the Organization of Citrus Virologists (IOCV). Riverside, CA: International Organization of Citrus Virologists; 2002. p. 264-71.
Cohen O, Batuman O, Stanbekova G, Sano T, Mawassi W, Bar-Joseph M. Construction of a multiprobe for the simultaneous detection of viroids infecting citrus trees. Virus Genes. 2006;33(3):287-92.
Bernard L, Duran-Vila N. A novel RTPCR approach for detection and characterization of citrus viroids. Mol Cell Probes. 2006;20(2):105-13.
Murcia N, Serra P, Olmos A, Duran-Vila N. A novel hybridization approach for detection of citrus viroids. Mol Cell Probes. 2009;23(2):95-102.
Nakahara K, Hataya T, Uyeda I. A simple rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridisation and RT-PCR. J Virol Methods. 1999;77(1):47-58.
Noronha-Fonseca ME, Marcellino LH, Gander E. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes. J Virol Methods. 1996;57(2):203-7.
Palacio A, Foissac X, Duran-Vila N. Indexing of citrus viroids by imprint hybridization: comparation with other detection methods. In: Da Graça JV, Lee RF, Yokomi RK, editors. Proceedings XIV Conference of the Internacional Organization of Citrus Virologist (IOCV). Riverside, CA: Internacional Organization of Citrus Virologist; 2000. p. 294-301.
Ito T, Ieki H, Ozaki K. Simultaneous detection of six citrus viroids and Apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. J Virol Methods. 2002;106(2):235-9.
Ragozzino E, Faggioli F, Barba M. Development of a one tube-one step RT PCR protocol for the detection of seven viroids in four genera: apscaviroid, hostuviroid, pelamoviroid. J Virol Methods. 2004;121(1):25-9.
Wang X, Zhou C, Tang K, Zhou Y, Li Z. A rapid one-step multiplex RT-PCR assay for the simultaneous detection of five citrus viroids in China. Eur J Plant Pathol. 2009;124(1):175-80.
Tessitori M, Rizza S, Reina A, La Rosa R. Development of a real-time assay for the simultaneous detection of citrus viroids [abstract]. J Plant Pathol. 2004;86(4 Special issue):336.
Navarro B, Darós JA, Flores R. Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs. J Virol Methods. 1998;73(1):1-9.
Puchta H, Ramm K, Luckinger R, Hadas R, Bar-Joseph M, Sänger HL. Primary and secondary structure of citrus viroid IV (CVd IV), a new chimeric viroid present in dwarfed grapefruit in Israel. Nucleic Acids Res. 1991;19(23):6640.
Rakowski AG, Szychowski JA, Avena ZS, Semancik JS. Nucleotide sequence and structural features of the group III citrus viroids. J Gen Virol. 1994;75(Pt 12):3581-4.
Nakahara K, Hataya T, Uyeda I. Inosine 5’-triphosphate can dramatically increase the yield of NASBA products targeting GC-rich and intramolecular base-paired viroid RNA. Nucleic Acids Res. 1998;26(7):1854-6.
Eiras M, Rodrigues-Silva S, Sanches- Stuchi E, Penteado-Natividade Targon ML, Alves-Carvalho S. Viroides em citros. Trop Plant Pathol. 2009;34(5):275-96.
Sieburth PJ, Irey M, Garnsey SM, Owens RA. The use of RT-PCR in the Florida citrus viroid indexing program. In: Duran-Vila N, Milne RG, Da Graça JV, editors. Proceedings XV Conference of the Internacional Organization of Citrus Virologist (IOCV). Riverside, CA; 2002. pp. 230-9.
Ito T, Ieki H, Ozaki K, Iwanami T, Nakahara K, Hataya T, et al. Multiple citrus viroids in citrus from Japan and their ability to produce exocortis-like symptoms in citron. Phytopathology. 2002;92(5):542-7.
Cañizares M, Marcos J, Pallás V. Molecular characterization of an almond isolate of hop stunt viroid (HSVd) and conditions for eliminating spurious hybridization in its diagnostics in almond samples. Eur J Plant Pathol. 1999;105(6):553-8.
WenXing X, Ni H, QiuTing J, Farooq AB, ZeQiong W, YanSu S, et al. Probe binding to host proteins: A cause for false positive signals in viroid detection by tissue hybridization. Virus Res. 2009; 145(1):26-30.
Gómez G, Pallás V. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA. J Virol. 2004;78(18):10104-10.
Rodio ME, Delgado S, Flores R, Di Serio F. Variants of peach latent mosaic viroid inducing peach calico: Uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. J Gen Virol. 2006;87(Pt 1): 231-40.
Umaña R. Diagnóstico de CBCVd (Cocadviroide) y CVd-VI (Apscaviroide) en plantaciones citrícolas del Uruguay mediante técnicas de detección basadas en hibridación molecular no isotópica. Tesis de Maestría en Biotecnología. Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. 2010.
Semancik JS, Morris TJ, Weathers LG, Rordorf GF, Kearns DR. Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease. Virology. 1975;63(1):160-7.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-9.
Cañizares MC, Marcos JF, Pallás V. Studies on the incidence of hop stunt viroid in apricot trees (Prunus armeniaca) by using an easy and short extraction method to analyze a large number of samples. Acta Hort. 1998;472(1):581-7.
International Potato Center (CIP). Preparation of 32P-labeled probes by RNA transcription. In: Salazar LF, Jayasinghe U, editors. Techniques in Plant Virology. Training Manual. Sections 3, 4, 5. Lima: International Potato Center (CIP); 1997.
Manchester KL. Value of A260/A280 ratios for measurement of purity of nucleic acids. Bio-Techniques. 1995;19(2):208-12.
Pagliano G, Orlando L, Gravina A. Detección y caracterización del complejo de viroides de cítricos en Uruguay. Agrociencia. 1998;1(2):74-83.
Mohamed ME, Hashemian SMB, Dafalla G, Bové JM, Duran-Vila N. Occurrence and identifi cation of citrus viroids from Sudan. J Plant Pathol. 2009;91(1):185-90.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Semancik JS, Tsuruda D, Zaner LJ, Geelen LMC, Weathers LG. Exocortis Disease: Subcellular distribution of pathogenic (viroid) RNA. Virology. 1976;69(2):669-76.
Li SF, Onodera S, Sano T, Yoshida K, Wang GP, Shikata E. Gene diagnosis of viroids: Comparisons of return-PAGE and hybridization using DIG-labeled DNA and RNA probes for practical diagnosis of hop stunt, citrus exocortis and apple scar skin viroids in their natural host plants. Ann Phytopathol Soc Jpn. 1995;61(4):381-90.
Wang X, Zhou C, Tang K, Lan J, Zhou Y, Li Z. Preliminary Studies on Species and Distribution of Citrus Viroids in China. Agric Sci China. 2008;7(9):1097-103.
Tuiskunen A, Leparc-Goffart I, Boubis L, Monteil V, Klingstrom J, Tolou HJ, et al. Selfpriming of reverse transcriptase impairs strand-specifi c detection of dengue virus RNA. J Gen Virol. 2010;91(4):1019-27.
Rodríguez R, Ramos PL, Dorestes V, Velázquez K, Peral R, Fuentes A, et al. Establishment of a non-radioactive nucleic acid hybridization technique for Begomovirus detection. Biotecnol Apl. 2003;20(3):164-9.