2013, Número 2
<< Anterior Siguiente >>
Biotecnol Apl 2013; 30 (2)
Evaluación de cuatro métodos de extracción de ARN viroide para el diagnóstico molecular de CEVd en Citrus limon mediante RT-PCR, Dot blot y Northern blot
Umaña R, Pritsch C, Arbiza JR, Rivas F, Pagliano G
Idioma: Español
Referencias bibliográficas: 39
Paginas: 125-136
Archivo PDF: 420.92 Kb.
RESUMEN
En el desarrollo de metodologías moleculares diagnósticas en variedades cítricas propensas a infección viroide, se precisa la extracción eficiente de ARN, siguiendo criterios de concentración y pureza. Los contaminantes remanentes
pueden afectar la detección según la herramienta molecular escogida. Esta condición se analiza a partir del espectro
de absorción del ARN; mediante la reacción en cadena de la polimerasa con transcriptasa inversa (RT-PCR) y por los niveles de intensidad de las señales de
Northern blot y
Dot blot, en términos de respuesta analítica/sensibilidad. Se evaluaron cuatro métodos de extracción de ARN, por sus efectos sobre la detección de presencia/ausencia del
Citrus Exocortis Viroid (CEVd) en
Citrus limon mediante análisis moleculares diagnósticos: 1) extracción viroide convencional (EVC); 2) fenol/tiocianato de guanidina (FTG); 3) SDS/acetato de potasio (SAP); y 4) formaldehído/SSC (FS). Los valores del tejido de floema estuvieron entre 7500 ng/µL y 1200 ng/µL y los rangos entre 1.3 y 2.0 DO260/280.
La evaluación por aproximaciones de la RT-PCR reflejó las amplificaciones esperadas del genoma completo del CEVd; sin embargo, aún se discuten los escenarios erráticos. Las hibridaciones no radiactivas revelaron señales de alta intensidad (132 UR) para el tejido infectado, según el método de EVC, y la definición del límite de positividad
para la presencia de infección (78 UR). Las herramientas basadas en hibridaciones moleculares interfieren en el
diagnóstico, por la rigurosidad del protocolo y las condiciones del ARN molde. La extracción viroide como punto de partida de una detección exitosa y los métodos moleculares ensayados, mostraron las posibilidades diagnósticas de la asociación de
Northern blot con la EVC.
REFERENCIAS (EN ESTE ARTÍCULO)
Flores R. A naked plant-specifi c RNA ten-fold smaller than the smallest known viral RNA: the viroid. C R Acad Sci III. 2001; 324(10):943-52.
Flores R, Randles JW, Bar-Joseph M, Diener TO. Viroids. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carsten EB, Estes MK, Lemon SM, et al., editors. Virus taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2000. p. 1009-24.
Palacio A, Foissac X, Duran-Vila N. Indexing of citrus viroids by imprint hybridisation. Eur J Plant Pathol. 1999;105(9): 897-903.
Barbosa CJ, Pina JA, Navarro L, Duran- Vila N. Replication/accumulation and symptom expression of citrus viroids on some species of citrus and related genera. In: Duran-Vila N, Milne RG, Da Graça JV, editors. Proceedings XV International Conference of the Organization of Citrus Virologists (IOCV). Riverside, CA: International Organization of Citrus Virologists; 2002. p. 264-71.
Cohen O, Batuman O, Stanbekova G, Sano T, Mawassi W, Bar-Joseph M. Construction of a multiprobe for the simultaneous detection of viroids infecting citrus trees. Virus Genes. 2006;33(3):287-92.
Bernard L, Duran-Vila N. A novel RTPCR approach for detection and characterization of citrus viroids. Mol Cell Probes. 2006;20(2):105-13.
Murcia N, Serra P, Olmos A, Duran-Vila N. A novel hybridization approach for detection of citrus viroids. Mol Cell Probes. 2009;23(2):95-102.
Nakahara K, Hataya T, Uyeda I. A simple rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridisation and RT-PCR. J Virol Methods. 1999;77(1):47-58.
Noronha-Fonseca ME, Marcellino LH, Gander E. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes. J Virol Methods. 1996;57(2):203-7.
Palacio A, Foissac X, Duran-Vila N. Indexing of citrus viroids by imprint hybridization: comparation with other detection methods. In: Da Graça JV, Lee RF, Yokomi RK, editors. Proceedings XIV Conference of the Internacional Organization of Citrus Virologist (IOCV). Riverside, CA: Internacional Organization of Citrus Virologist; 2000. p. 294-301.
Ito T, Ieki H, Ozaki K. Simultaneous detection of six citrus viroids and Apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. J Virol Methods. 2002;106(2):235-9.
Ragozzino E, Faggioli F, Barba M. Development of a one tube-one step RT PCR protocol for the detection of seven viroids in four genera: apscaviroid, hostuviroid, pelamoviroid. J Virol Methods. 2004;121(1):25-9.
Wang X, Zhou C, Tang K, Zhou Y, Li Z. A rapid one-step multiplex RT-PCR assay for the simultaneous detection of five citrus viroids in China. Eur J Plant Pathol. 2009;124(1):175-80.
Tessitori M, Rizza S, Reina A, La Rosa R. Development of a real-time assay for the simultaneous detection of citrus viroids [abstract]. J Plant Pathol. 2004;86(4 Special issue):336.
Navarro B, Darós JA, Flores R. Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs. J Virol Methods. 1998;73(1):1-9.
Puchta H, Ramm K, Luckinger R, Hadas R, Bar-Joseph M, Sänger HL. Primary and secondary structure of citrus viroid IV (CVd IV), a new chimeric viroid present in dwarfed grapefruit in Israel. Nucleic Acids Res. 1991;19(23):6640.
Rakowski AG, Szychowski JA, Avena ZS, Semancik JS. Nucleotide sequence and structural features of the group III citrus viroids. J Gen Virol. 1994;75(Pt 12):3581-4.
Nakahara K, Hataya T, Uyeda I. Inosine 5’-triphosphate can dramatically increase the yield of NASBA products targeting GC-rich and intramolecular base-paired viroid RNA. Nucleic Acids Res. 1998;26(7):1854-6.
Eiras M, Rodrigues-Silva S, Sanches- Stuchi E, Penteado-Natividade Targon ML, Alves-Carvalho S. Viroides em citros. Trop Plant Pathol. 2009;34(5):275-96.
Sieburth PJ, Irey M, Garnsey SM, Owens RA. The use of RT-PCR in the Florida citrus viroid indexing program. In: Duran-Vila N, Milne RG, Da Graça JV, editors. Proceedings XV Conference of the Internacional Organization of Citrus Virologist (IOCV). Riverside, CA; 2002. pp. 230-9.
Ito T, Ieki H, Ozaki K, Iwanami T, Nakahara K, Hataya T, et al. Multiple citrus viroids in citrus from Japan and their ability to produce exocortis-like symptoms in citron. Phytopathology. 2002;92(5):542-7.
Cañizares M, Marcos J, Pallás V. Molecular characterization of an almond isolate of hop stunt viroid (HSVd) and conditions for eliminating spurious hybridization in its diagnostics in almond samples. Eur J Plant Pathol. 1999;105(6):553-8.
WenXing X, Ni H, QiuTing J, Farooq AB, ZeQiong W, YanSu S, et al. Probe binding to host proteins: A cause for false positive signals in viroid detection by tissue hybridization. Virus Res. 2009; 145(1):26-30.
Gómez G, Pallás V. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA. J Virol. 2004;78(18):10104-10.
Rodio ME, Delgado S, Flores R, Di Serio F. Variants of peach latent mosaic viroid inducing peach calico: Uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. J Gen Virol. 2006;87(Pt 1): 231-40.
Umaña R. Diagnóstico de CBCVd (Cocadviroide) y CVd-VI (Apscaviroide) en plantaciones citrícolas del Uruguay mediante técnicas de detección basadas en hibridación molecular no isotópica. Tesis de Maestría en Biotecnología. Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. 2010.
Semancik JS, Morris TJ, Weathers LG, Rordorf GF, Kearns DR. Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease. Virology. 1975;63(1):160-7.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-9.
Cañizares MC, Marcos JF, Pallás V. Studies on the incidence of hop stunt viroid in apricot trees (Prunus armeniaca) by using an easy and short extraction method to analyze a large number of samples. Acta Hort. 1998;472(1):581-7.
International Potato Center (CIP). Preparation of 32P-labeled probes by RNA transcription. In: Salazar LF, Jayasinghe U, editors. Techniques in Plant Virology. Training Manual. Sections 3, 4, 5. Lima: International Potato Center (CIP); 1997.
Manchester KL. Value of A260/A280 ratios for measurement of purity of nucleic acids. Bio-Techniques. 1995;19(2):208-12.
Pagliano G, Orlando L, Gravina A. Detección y caracterización del complejo de viroides de cítricos en Uruguay. Agrociencia. 1998;1(2):74-83.
Mohamed ME, Hashemian SMB, Dafalla G, Bové JM, Duran-Vila N. Occurrence and identifi cation of citrus viroids from Sudan. J Plant Pathol. 2009;91(1):185-90.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Semancik JS, Tsuruda D, Zaner LJ, Geelen LMC, Weathers LG. Exocortis Disease: Subcellular distribution of pathogenic (viroid) RNA. Virology. 1976;69(2):669-76.
Li SF, Onodera S, Sano T, Yoshida K, Wang GP, Shikata E. Gene diagnosis of viroids: Comparisons of return-PAGE and hybridization using DIG-labeled DNA and RNA probes for practical diagnosis of hop stunt, citrus exocortis and apple scar skin viroids in their natural host plants. Ann Phytopathol Soc Jpn. 1995;61(4):381-90.
Wang X, Zhou C, Tang K, Lan J, Zhou Y, Li Z. Preliminary Studies on Species and Distribution of Citrus Viroids in China. Agric Sci China. 2008;7(9):1097-103.
Tuiskunen A, Leparc-Goffart I, Boubis L, Monteil V, Klingstrom J, Tolou HJ, et al. Selfpriming of reverse transcriptase impairs strand-specifi c detection of dengue virus RNA. J Gen Virol. 2010;91(4):1019-27.
Rodríguez R, Ramos PL, Dorestes V, Velázquez K, Peral R, Fuentes A, et al. Establishment of a non-radioactive nucleic acid hybridization technique for Begomovirus detection. Biotecnol Apl. 2003;20(3):164-9.