2013, Number 4
<< Back Next >>
Correo Científico Médico 2013; 17 (4)
Thyrotropic axis role in neurodegenerative disorders
Cutié AY, Álvarez SA, Almaguer GD, Aguilera RR, Almaguer MLE
Language: Spanish
References: 50
Page: 489-500
PDF size: 128.98 Kb.
ABSTRACT
Thyroid hormones are primary regulators of intermediate metabolism in all body tissues. Particularly, they have very important functions at the level of nervous system, even having potentially neuro-protective effects. Usually, thyroid hormone levels are under a very close regulation in the nervous system and, because of that, small deviations from the normality range can be associated to neurodegenerative conditions. In this review, evidences about the roles of thyroid hormones in normal and pathological physiology of the nervous system are summarized, with an emphasis in neurodegenerative disorders and the molecular mechanisms involved. Findings suggest a significant role for thyroid hormones in several neurodegenerative diseases, although larger prospective studies are needed to clarify their function and to assess their usefulness as biomarkers and therapeutic targets.
REFERENCES
Tan ZS, Vasan RS. Thyroid function and Alzheimer´s disease. J Alzheimer Dis.2009; 16(3): 503-7.
García Moreno JM, Chacón Peña J. Hypothyroidism and Parkinson’s disease and the issue of diagnostic confusion. Mov Disord. 2003; 18(9): 1058-59.
Aziz NA, Pijl H, Frölich M, Roelfsema F, Roos RA. Altered thyrotropic and lactotropic axes regulation in Huntington's disease. Clin Endocrinol. 2010; 73(4):540-5
Tsai CC, Kao HY, Mitzutani A, Banayo E, Rajan H, McKeown M, et al. Ataxin 1 a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. PNAS. 2004; 101(12): 4047-52.
Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab. 2007; 3: 249-59.
Zhou M, Cao JH, Pan J, Lin HY, Davis FB, Davis PJ. L-thyroxine enhances sodium cannel current and synaptic transmission of rat prefrontal cortex pyramidal neurons. Immunol Endocr Metab Agents Med Chem. 2012;(4).
Lin HY, Davis FB, Luidens MK, Mousa SA, Cao JH, Zhou M, Davis PJ. Molecular basis for certain neuroprotective effects of thyroid hormone. Front Mol Neurosc. 2011; 4:1-6.
Barrett KE, Barman SM, Boitano S, Brooks HL. Ganong's Review of Medical Physiology. 23 ed. New York: McGraw-Hill; 2010.
Guyton AC, Hall JE. Textbook of Medical Physiology. 12 ed. Filadelfia: Elsevier; 2012.
Widmaier EP, Raff H, Strang KT. Human Physiology. The mechanisms of body function. 10 ed. New York: McGraw-Hill; 2010.
Farwell A, Dubord-Tomassetti SA, Pietrzykowski AZ, Leonard JL. Dynamic non-genomic actions of thyroid hormone in the developing brain. Endocrinol. 2006; 147: 2567-74.
Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol. 2011;51: 99-115.
Dembri A, Belkhiria M, Michel O, Michel R. Effects of short- and long-term thyroidectomy on mitochondrial and nuclear activity in adult rat brain. Mol Cell Endocrinol. 1983;33: 211-23.
Siegrist Kaiser CA, Juge Aubry C, Tranter MP, Ekenbarger DM, Leonard JL. Thyroxine dependent modulation of actin polymerization in cultured astrocytes. J Biol Chem. 1990; 265:296-302.
Rastogi RB, Hrdina PD, Singhal RL. Alterations of brain acetylcholine metabolism during neonatal hyperthyroidism. Brain Res. 1977; 123:188-92.
Navarro-Yubero C, Cuadrado A, Sonderegger P, Muñoz A. Neuroserpin is post-transcriptionally regulated by thyroid hormone. Mol Brain Res. 2004; 123(1-2): 56-65.
Man HY, Ma XM. A role for neuroserpin in neuron morphological development. J Neuroch; 2012; 121:495-496.
Mendes de Aguiar CB, Alchini R, Decker H, Álvarez Silva M, Tasca CI, Trentin AG. Thyroid hormone increases astrocyte glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res. 2008; 86: 3117-25.
Losi G, Garzon G, Puia G. Nongenomic regulation of glutamatergic neurotransmission in hippocampus by thyroid hormones. Neuroscience. 2008; 151:155-163.
Benvenuti S, Luciani P, Cellai I, Deledda C, Baglioni S, Saccardi R, et al. Thyroid hormone promote cell differentiation and up-regulate the expression of seladin-1 gene in in vitro models of human neuronal precursors. Exp Neurol. 2008;197: 437-46.
Peri A, Serio M. Neuroprotective effects of the Alzheimer´s disease related gene seladin-1. J Mol Endocrinol. 2008; 41:251-261.
Belandia B, Latasa MJ, Villa A, Pascual A. Thyroid hormone negatively regulates the transcriptional activity of the β–amiloid precursor protein gene. J Biol Chem.1998; 273: 30366-71.
Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012; 13(8):537-51.
Hicks D, Heidinger V, Mohand Said S, Sahel J, Dreyfus H. Growth factors and gangliosides as neuroprotective agents in excitotoxicity and ischemia. Gen Pharmacol. 1998;30:265-73.
Smith JW, Evans AT, Costall B, Smythe JW. Thyroid function, brain function and cognition: a brief review. Rev Neurosci Biobehav. 2002; 26: 45-60.
Gussekloo J, Van Exel E, Craen AJ, Meinders AE, Frölich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004; 292: 2591- 99.
Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, et al. Neuroendocrine disturbances in Huntington’s disease. PLoS ONE 2009; 4(3):4962.
Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropath Exp Neur. 2006; 65(7):631-41.
Wahlin A, Bunce D, Wahlin TR. Longitudinal evidence of the impact of normal thyroid stimulating hormone variations on cognitive functioning in very old age. Psycho-neuro-endocrinol. 2005;30:625-637.
Luboshitzky R, Oberman AS, Kaufman N, Reichman N, Flatau E. Prevalence of cognitive dysfunction and hypothyroidism in an elderly community population. Isr J Med Sci.1996; 32: 60-65.
Davis JD, Podolanczuk A, Donahue JE, Stopa E, Hennessy JV, Luo LG, et al. Thyroid hormone levels in the prefrontal cortex of Alzheimer´s disease patients. Current Aging Science. 2008; 1(3):177.
Goumidia L, Flamantb F, Lendonc C, Galimbertid D, Pasquiere F, Scarpinid E, et al. Study of thyroid hormone receptor alpha gene polymorphisms on Alzheimer´s disease. Neurobiology of aging. 2011; 32(4): 624-30.
Bianchi G, Solaroli E, Zaccheroni V, Grossi G, Bargossi AM, Melchionda N, et al. Oxidative stress and anti-oxidant metabolites in patients with hyperthyroidism: effect of treatment. Horm Metab Res.1999; 3:620-624.
Chan RS, Huey ED, Maecker HL, Cortopassi KM, Howard SA, Iyer AM, et al. Endocrine modulators of necrotic neuron death. Brain Pathol. 1996;6:481-91.
Seet RCS, Lee CYJ, Limet ECH.Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Rad Biol Med. 2010; 48(4):560-66.
Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol.2011; 26:1–58.
Cusimano G, Capriani C, Bonifati V, Meco G. Hypothalamo-pituitary function and dopamine dependence in untreated parkinsonian patients. Acta Neurol Scand. 1991; 83:145-50.
Tandeter H, Levy A, Gutman G, Shvartzman P. Subclinical thyroid disease in patients with Parkinson´s disease. Arch Gerontol Geriatr. 2001; 33(3): 295-300.
Munhoz RP, Teive HA, Troiano AR, Hauck PR, Herdoiza Leiva MH, Graff H, et al. Parkinson´s disease and thyroid dysfunction. Parkinsonism Relat Disord .2004; 10(6): 381-3.
Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet Journal of Rare Diseases. 2009;4:3.
Kiessling WR. Thyroid function in 44 patients with amyotrophic lateral sclerosis. Arch Neurol. 1982; 39(4): 241-42.
Itzecka J, Stelmasiak Z. Thyroid function in patients with amyotrophic lateral sclerosis. Ann Univ Mariae Curie Sklodowska Med. 2003; 58(1): 343-7.
Shoulson I, Young AB. Milestones in Huntington´s disease. Mov Disord. 2011; 26(6): 1127-33.
Lavin PJ, Bone I, Sheridan P. Studies of hypothalamic function in Huntington’s chorea. J Neurol Neurosurg Psychiatry. 1981; 44(5): 414-8.
Hayden MR, Vinik AI, Paul M, Beighton P. Impaired prolactin release in Huntington’s chorea. Evidence for dopaminergic excess. Lancet.1977; 2(8035): 423-6.
Joseph Bravo P. Hypophysiotropic thyrotropin-releasing hormone neurons as transducers of energy homeostasis. Endocrinol.2004; 145(11): 4813-5.
Aziz NA, Van der Burg JM, Landwehrmeyer GB. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology. 2008;71: 1506-13.
Nance MA, Sanders G. Characteristics of individuals with Huntington disease in long-term care. Mov Disord. 1996; 11(5):542-8.
Yohrling IV, George J, Farrell LA, Hollenberg AN, Cha J HJ. Mutant huntingtin increases nuclear corepressor function and enhances ligand-dependent nuclear hormone receptor activation. Mol Cell Neurosc. 2003; 23(1): 28-38.
Orr HT. Cell biology of spinocerebellar ataxia. J Cell Biol. 2012; 197(2):167-77.