2013, Number 3
<< Back Next >>
Rev Cubana Farm 2013; 47 (3)
Spectroscopic characterization of D-003 obtained from the sugar cane (Saccharum officinarum L.) wax
Marrero DD, Cora MM, Laguna GA, Gónzález CVL
Language: Spanish
References: 18
Page: 389-399
PDF size: 393.21 Kb.
ABSTRACT
Introduction: D-003, an active pharmaceutical ingredient (API) purified from sugar cane (
Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported.
Objective: to characterize the active pharmaceutical ingredient named D003 in accordance to its ultraviolet (UV), infrared (FTIR), nuclear magnetic resonance (NMR) and mass (MS) spectra.
Methods: samples of six batches of D-003 (CNIC, Cuba) were evaluated by UV, FTIR, NMR-
1H, NMR-
13C, and GC-MS techniques. For obtaining the mass spectra of D-003 acids, methyl (FAME) and trimethylsilyl ester derivatives were used. Quantification of free very long chain saturated fatty acids , analyzed as methyl ester derivatives, was made by GC with flame ionisation detector (FID).
Results: UV, FTIR, and
1H-NMR,
13C-NMR spectra showed that active pharmaceutical ingredient D-003 was composed of a mixture of free very long chain fatty acids, whereas the GC-MS and GC-FID techniques allowed ensuring the occurrence of 13 VLCFAs in set proportions: C24:0 (0.2-0.6 %), C25:0 (0.4-0.9 %), C26:0 (2.0-3.1 %), C27:0 (2.1-2.7 %), C28:0 (30.0-37.5 %), C29:0 (1.5-1.7 %), C30:0 (17.0-18.6 %), C31:0 (0.9-1.2 %), C32:0 (6.9-8.9 %), C33:0 (0.9-1.3 %), C34:0 (7.2-11.1 %), C35:0 (0.3-0.6 %) and C36:0 (2.2-3.8 %).
Conclusions: evidences from the UV, FTIR, NMR and GC-MS spectroscopic techniques prove that D-003 is composed of 13 saturated very long chain fatty acids, including octacosanoic acid as the most abundant one.
REFERENCES
Sarker SD. Two Decades of Phytochemical Analysis: from New Isolation and Characterization Techniques for Plant Secondary Metabolites to Advanced Metabolomics Studies. Phytochem Anal. 2010;21:1.
Bruneton J, Farmacognosia. 3ra. ed. Zaragoza: Acribia; 2001.
González L, Marrero D, Laguna A, Mas R, Arruzazabala ML, Carbajal D, et al. Mezcla de ácidos grasos primarios de alto peso molecular obtenidos de la cera de caña de azúcar y sus usos farmacéuticos, Patente CU 22,723, A1. 2002.
Mas R. D-003. Drugs of the Future. 2004;29(8):773-86.
Mendoza S. Efectos hipolipemiantes y antiosteoporóticos del D-003. Revista CENIC Ciencias Biológicas. 2007;38(1):31-2.
Arruzazabala ML, Molina V, López E, Castaño G, Fernández L, et al. Effects of D-003, a mixture of sugarcane wax acids, on platelet aggregation in hypercholesterolemic patients: a dose-titration, randomised, placebo-controlled trial. Arzn- Forsch Drug Res. 2008;58(8):376-84.
Castaño G, Mas R, Fernández L, Illnait J, Mendoza S. A comparison of the effects of D-003 and policosanol (5 and 10 mg/d) in patients with Type II hypercholesterolemia: a randomized, double-blinded study. Drugs Exp Clin Res. 2005;31(Suppl):31-44.
Pérez Y, Menéndez R, Mas R, González RM, Fernández L, Fernández JC, et al. Effects of D-003, a mixture of high molecular weight acids from sugarcane wax, on lipid peroxidation (LP) markers of older individuals. Curr Ther Res. 2008;69(1):36-48.
Noa M, Gámez R, Más R, Gutiérrez A, Mendoza N. Study of the long-term carcinogenicity potential of D-003, a mixture of high molecular weight sugarcane wax acids, in mice. Food Chem Toxicol. 2009;47(4):687-92.
Marrero D, Méndez E, González V, Tejeda Y, Laguna A. Determination of D003 by capillary gas chromatography. Rev CENIC Ciencias Químicas. 2002;33(3):99-105.
Weast RC, Grasselli JG. CRC Handbook of Data on organic compounds. 2nd ed. Boca Ratón: CRC Press Inc.; 1989.
Sun XF, Sun RC. Spectroscopic characterization of extractives isolated with MTBE from straws. TAPPI J. 2003;2(11):23-5.
Günther H. NMR spectroscopy: Basic principles, concepts and applications in chemistry. 2nd ed. New York: John Wiley & Sons; 1995. p. 432.
Gunstone FD. High resolution 13C-NMR spectra of long chain acids, methyl esters, glycerol esters, wax esters, nitriles, amides, alcohols and acetates. Chem Phys Lipids. 1993;66:189-93.
Kranz ZH, Lamberton JA, Murray KE, Redcliffe AH. Sugar-Cane Wax. II. An examination of the constituents of sugar-cane cuticle wax by gas chromatography. Australian J Chem. 1960;13:498-505.
Christie WW. Gas Chromatography-Mass Spectrometry Methods for Structural Analysis of Fatty Acids. Lipids. 1998;33(4):41-7.
Jiménez JJ, Bernal JL, Aumente S, Toribio L, Bernal J. Quality assurance of commercial beeswax II. Gas chromatography-electron impact ionization mass spectrometry of alcohols and acids. J Chromatogr A. 2003;1007:101-16.
Kolattukudy PE. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier; 1976. p. 211-9.