2012, Number 4
<< Back Next >>
Rev Endocrinol Nutr 2012; 20 (4)
Obesity: Multiple endocrine resistance
Godínez-Gutiérrez SA, Valerdi-Contreras L
Language: Spanish
References: 136
Page: 152-168
PDF size: 485.85 Kb.
ABSTRACT
Adipose tissue is a major source of energy for the human body. It is also a major source of adipocytokines, adiponectin and leptin. Adiponectin mediates the insulin-sensitizing effect through the adenosine monophosphate-dependent kinase (AMPK) PPAR-α signalling pathways. Reduction the effect of adiponectin has been associated with insulin resistance, dyslipidemia, and atherosclerosis. Evidence of adiponectin resistance has been found in obesity and following chronic HF feeding, and may contribute to the lipid accumulation observed in these conditions. The other major adipokine is leptin. The leptin signal is transmitted by the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. In common forms of obesity, hyperphagia, hyperinsulinemia, and hyperleptinemia coexist.
REFERENCES
Redinger RN. The physiology of adiposity. J Ky Med Assoc. 2008; 106: 53-62.
Lyon HN, Hirschhorn JN. Genetics of common forms of obesity: a brief overview. Am J Clin Nutr. 2005; 82: 215S-217S.
De Ferranti S, Mozaffarian D. The Perfect Storm: Obesity, adipocyte dysfunction, and metabolic consequences. Clinical Chemistry. 2008; 54: 945-955.
Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004; 1: e62.
Cheskin LJ. The pathogens are speaking: are we listening? J Nutr. 2001; 131: 2809S-2810S.
Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD, Rudel LL. Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring). 2007; 15: 1675-1684.
Oken E, Gillman MW. Fetal origins of obesity. Obes Res. 2003; 11: 496-506.
Thomas DE, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev. 2007; CD005105.
Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006; 6: 772-783.
Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999; 257: 79-83.
11 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000; 20: 1595-1599.
Acosta GE. Obesidad, tejido adiposo y resistencia a la insulina. Acta Bioquím Clín Latinoam. 2012; 6.
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003; 112: 1821-30.
Weisberg S, McCann D, Desai M, Rosenbaum M, Leibel R, Ferrante A. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112: 1796-808.
Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction: Implications for the syndrome of insulin resistance. J Clin Invest. 1996; 97: 2601–2610.
Sims, EA, Danforth E, Horton ES, Bray GA, Glennon JA, Salans LB. Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horm Res. 1973; 29: 457-496.
Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest. 1988; 82: 1398-1406.
Bak JF, Moller N, Schmitz O, Saaek A, Pedersen O. In vivo insulin action and muscle glycogen synthase activity in type 2 (non-insulin- dependent) diabetes mellitus: Effects of diet treatment. Diabetology. 1992; 35: 777–784.
Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996; 334: 292–5.
Oswal A, Yeo G. Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity (Silver Spring). 2010; 18: 221–9.
21 Banks WA, Farr SA, Morley JE. The effects of high fat diets on the blood-brain barrier transport of leptin: failure or adaptation? Physiol Behav. 2006; 88: 244–8.
Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008; 70: 537–556.
Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2010; 63: 123-32.
Okamoto H, Obici S, Accili D, Rossetti L. Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. J Clin Invest. 2005; 115: 1314 –1322.
Lin HV, Kim JY, Pocai A, Rossetti L, Shapiro L, Scherer PE, Accili D. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic/knockout mice. Diabetes. 2007; 56: 1969-1976.
Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, Kumada M, Sato K, Schiekofer S, Ohashi K, Funahashi T, Colucci WS, Walsh K. Adiponectin- mediated modulation of hypertrophic signals in the heart. Nat Med. 2004; 10: 1384-1389.
Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and Cox-2-dependent mechanisms. Nat Med. 2005; 11: 1096-1103.
Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, Martinet W, Van Hoof V et al. Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail. 2010; 3: 185-194.
Khan RS, Kato TS, Chokshi A, Chew M, Yu S, Wu C, Singh P, Cheema FH, Takayama H et al. Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: Correction after ventricular assist device implantation. Circulation Heart Failure. 2012; 5: 340-348.
Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol. 2002; 12: R236-8.
Olivares Reyes JA, Arellano Plancarte A. Bases moleculares de las acciones de la insulina. REB. 2008; 27: 9-18.
Myers MG Jr, White MF. The molecular basis of insulin action. En: Gruenberg G, Zick Y. Taylor and Francis Insulin signaling: From cultured cells to animal models. New York. 2002: 55-87.
Kodi S Ravichandran. Signaling via Shc family adapter proteins. Oncogene. 2001; 20: 6322-6330.
Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. The Biochemical Journal. 2005; 392: 249–61.
Avruch J. Insulin signal transduction through protein kinase cascades. Mol Cell Biochem. 1998; 182: 31-48.
Andjelković M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci. 1996; 93: 5699–5704.
Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation cold spring. Harb Perspect Biol. 2013; 5.
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007; 129: 1261–74.
Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA. Physiological functions of protein kinase B/Akt. Biochem Soc Trans. 2004; 32: 350-354.
Grupo de Trabajo Resistencia a la insulina de la Sociedad Española de Diabetes. Resistencia a la insulina y su implicación en múltiples factores de riesgo asociados a diabetes tipo 2. Med Clin (Barc). 2002; 119: 458-63.
Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Dev. 2007; 21: 1443-1455.
Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989; 83: 1168–1173.
Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006; 119: S10–S16.
Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008; 34: 2-11.
Kuchenbecker WKH, Groen H, Zijlstra TM, Bolster JHT, Slart RHJ, van der Jagt ER, Muller Kobold AC, Wolffenbuttel BHR et al. The subcutaneous abdominal fat and not the intraabdominal fat compartment is associated with anovulation in women with obesity and infertility. The Journal of Clinical Endocrinology & Metabolism. 2010; 95: 2107-2112.
Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 2003; 148: 293-300.
Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 2004; 145: 367–383.
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002; 8: 1288-1295.
Qi Y, Nie Z, Lee YS, Singhal NS, Scherer PE, Lazar MA, Ahima RS. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes 2006; 55: 3083–3090.
Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer, PE et al. Regulation of fasted blood glucose by resistin. Science. 2004; 303: 1195-1198.
Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA. Activation of SOCS-3 by resistin. Mol Cell Biol. 2005; 25: 1569-1575.
Juhan-Vague I, Alessi MC, Mavri A, Morange PE. Plasminogen activator inhibitor-1 inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost. 2003; 1 (7): 1575-9.
Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 2004; 53: 336-346.
Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, Robert JJ, Capeau J, Hainque B. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 2002; 87: 2084-2089.
Rieusset J, Bouzakri K, Chevillotte E, Ricard N, Jacquet D, Bastard JP, Laville M, Vidal H. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes. 2004; 53: 2232–2241.
Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003; 27: S53–S55.
Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science. 1996; 271: 665-668.
Hautanen A, Raikkonen K, Adlercreutz H. Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med. 1997; 241: 451-461.
Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001; 294: 2166-2170.
Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M. Expression of the mRNA coding for 11b-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab. 2002; 87: 2701-2705.
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest. 1995; 95: 2409-2415.
Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med. 2005; 11: 183-190.
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K et al. MCP-1 contributes in obesity. J Clin Invest. 2006 116: 1494-1505.
Gao Z, Hwang D, Bataille F, Lefevre M, York D, Qatanani Q Lazar MJ, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappaB kinase complex. J Biol Chem. 2002; 277: 115-121.
Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science. 2001; 293: 1673-1677.
Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med. 2004; 10: 734-738.
Ueki K, Kondo T, Tseng YH, Kahn CR. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci. 2004; 101: 10422-10427.
Pocai A, Morgan, K, Buettner C, Gutierrez-Juarez, R, Obici S, Rossetti L. Central leptin acutely reverses diet-induced hepatic insulin resistance. Diabetes. 2005; 54: 3182-3189.
Ueki K, Kondo T, Tseng YH, Kahn CR. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci. 2004; 101: 10422-10427.
Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002; 51: 271-275.
Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain–liver circuit regulates glucose homeostasis. Cell Metab. 2005; 1: 53-61.
Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord. 2000; 24: S28–S32.
Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr Rev. 2002; 23: 599-622.
Rao MS, Reddy JK. Peroxisomal b-oxidation and steatohepatitis. Semin. Liver Dis. 2001; 21: 43-55.
Destefano MB, Stern JS, Castonguay TW. Effect of chronic insulin administration on food intake and body weight in rats. Physiol Behav. 1991; 50: 801-806.
Alemzadeh R, Langley G, Upchurch L, Smith P, Slonim AE. Beneficial effect of diazoxide in obese hyperinsulinemic adults. J Clin Endocrinol Metab. 1998; 83: 1911–1915.
Corkey BE. Banting lecture 2011 hyperinsulinemia: cause or consequence? Diabetes. 2012; 61: 13-14.
Seeley, RJ, Woods SC. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci. 2003; 4: 901–909.
Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001; 104: 531-543.
Coleman RA, Herrmann TS. Nutritional regulation of leptin in humans. Diabetologia. 1999; 42: 639-646.
Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowit D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obesegene. Science. 1995; 269: 543–546.
Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, Gallagher D, Mayer L, Murphy E, Leibel RL. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005; 115: 3579–3586.
Banks WA. Is obesity a disease of the blood-brain barrier? Physiological, pathological, and evolutionary considerations. Curr Pharm Des. 2003; 9: 801-809.
Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005; 8: 571-578.
Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001; 411: 480-484.
Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers MG Jr. Regulation of jak kinases by intracellular leptin receptor sequences. J Biol Chem. 2002; 277: 41547-41555.
Munzberg H, Bjornholm M, Bates SH, Myers MG Jr. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci. 2005; 62: 642-652.
Dunn SL, Bjornholm M, Bates SH, Chen Z, Seifert M, Myers MG Jr. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol. 2005; 19: 925-938.
Banks AS, Davis SM, Bates SH, Myers MG Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000; 275: 14563-14572.
Niswender KD, Gallis B, Blevins JE, Corson MA, Schwartz MW, Baskin DG. Immunocytochemical detection of phosphatidylinositol 3-kinase activation by insulin and leptin. J Histochem Cytochem. 2003; 51: 275-283.
Bjorbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997; 272: 686-695.
Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated kupffer cells. Life Sci. 2005; 77: 1502-1515.
Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008; 70: 537-56.
Münzberg H, Myers, MG Jr. Molecular and anatomical determinants of central leptin resistance. Nature Neuroscience. 2005; 8: 566-570.
Banks WA. The many lives of leptin. Peptides. 2004; 25: 331-338.
Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal bloodbrain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol. 2004; 286: R143-R150.
Peruzzo B et al. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000; 132: 10-26.
Münzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced-obese mice. Endocrinology. 2004; 145: 4880-4889.
Mori H et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004; 10: 739-743.
Cheng A et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell. 2002; 2: 497-503.
Zabolotny JM et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002; 2: 489-495.
Cheng A et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell. 2002; 2: 497-503.
Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998; 1: 619-625.
Bjorbaek C et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000; 275: 40649-40657.
Münzberg H, Myers MG Jr. Molecular and anatomical determinants of central leptin resistance. Nature Neuroscience. 2005; 8: 566-570.
Banks AS, Davis SM, Bates SH, Myers MG Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000; 275: 14563-14572.
Dunn SL et al. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and SOCS3. Mol Endocrinol. 2005; 19: 925-938.
Palomer X, Pérez A, Blanco-Vaca F. Adiponectina: un nuevo nexo entre obesidad, resistencia a la insulina y enfermedad cardiovascular. Med Clin (Barc). 2005; 124 (10): 388-395.
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (Adipose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996; 221: 286-289.
Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita T. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem. 1996; 20: 803-812.
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995; 270: 26746-26749.
Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996; 271: 10697-10703.
Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more tan just another fat cell hormone? Diabetes Care. 2003; 26: 2442-2450.
Wang Y, Xu A, Knight C, Xu LX, Cooper GJS. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. J Biol Chem. 2002; 277: 19521-19529.
Tsao TS, Murrey HE, Hug C, Lee DH, Lodish HF. Oligomerization state-dependent activation of NF-kB signalling pathway by adipocyte complement related protein of 30 kDa (Acrp30). J Biol Chem. 2002; 277: 29359-29362.
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423: 762-769.
Cammisotto PG, Londono I, Gingras D, Bendayan M. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol. 2008; 294: F881-889.
Tian L, Luo N, Zhu X, Chung BH, Garvey WT, Fu Y. Adiponectin-AdipoR1/2- APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 2012; 221: 66-75.
Heiker JT, Kosel D, Beck-Sickinger AG. Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors. Biol Chem. 2010; 391: 1005-1018.
Charlton HK, Webster J, Kruger S, Simpson F, Richards AA, Whitehead JP. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling. Biochem Biophys Res Commun. 2010; 392: 234-239.
Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003; 52: 1355-1363.
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002; 8: 1288-1295.
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte- secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001; 7: 947-953.
Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003; 278: 45021-45026.
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86: 1930-1935.
Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002; 277: 25863-25866.
Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002; 8: 731-737.
Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003; 278: 40352-40363.
Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004; 10: 524-529.
Zhao H, Yakar S, Gavrilova O, Sun H, Zhang Y, Kim H et al. Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes. 2004; 53: 2901-2909.
Kim H, Haluzik M, Gavrilova O, Yakar S, Portas J, Sun H et al. Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes. Diabetologia. 2004; 47: 2215-2225.
Kim CH, Pennisi P, Zhao H, Yakar S, Kaufman JB, Iganaki K et al. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. American Journal of Physiology-Endocrinology and Metabolism. 2006; 291: E298-E305.
Lin HV, Kim JY, Pocai A, Rossetti L, Shapiro L, Scherer PE. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic/knockout mice. Diabetes. 2007; 56: 1969-1976.
Kido Y, Philippe N, Schaffer AA, Accili D. Genetic modifiers of the insulin resistance phenotype in mice. Diabetes. 2000; 49: 589-596.
Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004; 279: 30817-30822.
Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005; 2: 153-163.