2005, Number 2
<< Back Next >>
Vet Mex 2005; 36 (2)
Hidraulic device for gradual occlusion in the canine pulmonary artery
Flores CPL, Santos MLE, Infante VO, Martínez MR, Sánchez TG, Tena BC, Graullera RV, Rodríguez RG, Sandoval ZJ
Language: English/Spanish
References: 26
Page: 177-187
PDF size: 343.47 Kb.
ABSTRACT
A hydraulic occlusion device (HOD) made of inert and biocompatible material is presented here. By injecting water into the device, it expands and causes compression of the main pulmonary artery, consequently increasing the right ventricular systolic pressure (RVSP) to mimic the effect of pulmonary disease of the right ventricle. Inert and biocompatibles materials in the construction of the DOH were used. After testing the HOD for distention, the devices were surgically implanted into the main pulmonary artery of 12 healthy, mongrel dogs weighing 18- 28 Kg. Both the pre and post-surgical RVSP, and the RVSP under acute and chronic compression were assessed. Results are expressed as mean ± standard deviation. Differences between RVSP under basal and acute compression were compared using the t test for paired groups; while differences between RVSP under basal and chronic compression were compared using multiple sample ANOVA with Bonferroni’s adjustment. Statistical significance was considered when P ‹ 0.05. Chamber pressures at known volumes ranged from 1.4 ± 1.4 mmHg for 0.1 ml of water to 185.8 ± 9.3 mmHg for 0.8 ml of water. Basal pre and post-surgical RVSP were 20.9 ± 3 mmHg and 22 ± 2 mmHg, respectively (P ‹ 0.871). After acute compression, basal RVSP increased from 22 ± 2 mmHg to 58 ± 3 mmHg (P ‹ 0.001); while after chronic compression, RVSP initially increased to 41.7 ± 1.1 mmHg, reaching 61.4 ± 1.9 mmHg (P ‹ 0.005). The HOD allowed maintaining this pressure level for 60 days. The HOD is a versatile device that can be used to acutely or chronically increase the RVSP.
REFERENCES
Barnard D, Alpert JS. Right ventricular function in health and disease. Curr Probl Cardiol 1987; 12: 422-449.
Bache RJ. Effects of hypertrophy on the coronary circulation. Prog Cardiovasc Dis 1988;21: 403-440.
Rich S, Dantzker DR, Ayres SM, Bergofsky EH. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 1987;107:216-223.
D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991;115:343-349.
Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, et al. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation 1994; 89:1733-1744.
Austen GW, Morrow AG, Berry WB. Experimental studies of the surgical treatment of primary pulmonary hipertension. J Thorac Cardiovasc Surg 1964; 48: 448-455.
Laks MM, Morady F, Swan J. Canine right and left ventricular cell and sarcomere lengths after banding the pulmonary artery. Circ Res 1969;24:705-710.
Laks MM, Morady F, Andomian H, Swan JC. Presence of widened and multiple intercalad discs in the hypertrophied canine heart. Circ Res 1970; 27:391-402.
Laks MM, Morady F, Gardner D, Swan HJC. Relation of ventricular volume, compliance, and mass in the normal and pulmonary artery banded canine heart. Cardiovasc Res 1972; 6:187-198.
Monahar M, Thurmon JC, Tranquilli WJ. Regional myocardial blood flow and coronary vascular reserve in unanesthetized young calves with severe concentric right ventricular hypertrophy. Circ Res 1981;48:785- 796.
Archie JP, Fixler DE, Ullyot DG. Regional myocardial blood flow in lambs with concentric right ventricular hypertrophy. Circ Res 1974;34:143-154.
Monahar M. Transmural coronary vasodilatador reserve and flow distribution during tachycardia in conscious young swine with right ventricular hypertrophy. Cardiovasc Res 1985; 19: 104-112.
Gomez A.; Mink S. Increased left ventricular stiffness impairs filling in dogs with pulmonary emphysema in respiratory failure. J. Clin Invest 1986; 78: 228-240.
Rabinovitch M, Fisher K, Gambie W, Reid L, Treves S. Thallium-201 quantification of right ventricular hypertrophy in chronically hypoxic rats. Radiology 1979;130: 223-225.
Ghignone M. Girling BL, Prewitt RM. Volume expansion versus norepinephine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology 1984; 60;1323-135.
American Society for Testing and Materials. Designa-tion F 75-01 Standard specification for Cobalt-28 Chromium-6 Molybdenum alloy castings and castings alloy for surgical implants. (UNS R30075). Available from: URL: http://www.astm.org mayo-2003
Unruh HW, Wang R, Bose D, Mink SN. Does pentobarbital anaesthesia depress left ventricular contractility in dogs? Am J Physiol 1991; 261: H700-H706.
Ginés F, Grignola JC. Sincronización del ventrículo derecho frente a un incremento agudo de su postcarga. Isquierdización del comportamiento mecánico del ventrículo derecho. Rev Esp Cardiol 2001; 54: 973-980.
Borjab M.J, Ellison WG, Slocum B. Técnicas actuales en cirugía de pequeños animales. México: Editorial Inter-Médica XXI, 2001.
Hickman J, Walker R. Atlas de cirugía veterinaria. México: CECSA, 1984.
Ganz W, Donoso R, Marcus H. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 1971; 27:392-396.
22.Rodríguez G, Infante O, Pérez J, Espinosa L, Valenzuela F, Rojas M. Sistema de adquisición de señales fisiológicas. Rev Mex Ing Biomed 1988; 9: 25-35.
Infante O, Rodríguez G, Valenzuela F, Espinosa L, González C. Terminal de Electrocardiografía. Rev Mex Ing Biomed 1988; 9: 87-95.
Santos LE, Infante O, Palomar A, Flores P, Sandoval J, Martinez M.. Analyses of a canine experimental model in the development of acute and chronic right ventricular hypertension. Eur Respir J 2000;16:450S.
Wolfle TL, Rozmariek CM, Grossblatt N. Guía para el cuidado y uso de los animales de laboratorio: USA: National Research Council. National Academy of Sciences. 1996:1-146.
Departamento del Distrito Federal. Ley de protección a los animales para el Distrito Federal. México (DF) DDF. 1981;1:1-6.