2005, Number 6
<< Back Next >>
Cir Cir 2005; 73 (6)
Multiresistant Pseudomanas spp. in vitro susceptibility to a combination of two antibiotics
Pliego-Castañeda A, Yánez-Viguri JA, López-Valle T
Language: Spanish
References: 25
Page: 465-470
PDF size: 101.67 Kb.
ABSTRACT
Introduction: In vitro antibiotic combination testing would guide therapy selection in patients severely infected by multi-drug resistant Pseudomonas.
Objectives: In vitro, a two-antibiotic combination susceptibile against multi-drug resistant Pseudomonas isolated at the Laboratorio Clínico of the Hospital de Oncología, Centro Médico Nacional Siglo XXI in Mexico City were analyzed to determine which antibiotic combination showed the best bactericidal activity.
Material and methods: During 10 months, 30 multi-drug resistant Pseudomonas strains were tested. An automated method was used, including a diluting solution with a well-known concentration of a second antibiotic. Quality controls recommended by the NCCLS were used: Pseudomonas aeruginosa ATCC 27853; Escherichia coli ATCC25922; and Escherichia coli ATCC 35218. Combinations were betalactamics-aminoglycosides; carbapenems-amikacin; fluoroquinolones-cefepime and ciprofloxacin-ampicillin.
Results: Ampicillin-ciprofloxacin combination was bactericidal against 100% of the isolates. Cefazolin, cefixime and ticarcillin with amikacin: ›50%; aztreonam, cefoxitin, cefuroxime, cefotaxime, ceftazidime and piperacillin with amikacin: 50-60%; cefepime with gentamicin: 76%; cefepime with amikacin: 86%; imipenem and meropenem with amikacin: 70% and 76%; cefepime with ciprofloxacin: 83%; cefepime with levofloxacin: 73%.
Conclusions: In vitro antibiotic combination susceptibilities against multi-drug resistant bacteria would be the only way to guide clinicians to select the best therapy in severe infections. We found that the ampicillin-ciprofloxacin combination showed the best in vitro effect against multi-drug resistant Pseudomonas.
REFERENCES
Cobben NAM, Drent M, Jonkers M, Wouters EFM, Vaneechoutte
M, Stobberingh EE. Outbreak of severe Pseudomonas aeruginosa respiratory infections due to contaminated nebulizers. J Hosp Infect 1996;33:63-70.
2. Kolmos HJ, Thuesen B, Nielsen SV, Lohmann M, Kristoffersen K, Rosdahl VT. Outbreak of infection in a burns unit due to Pseudomonas aeruginosa originating from contaminated tubing used for irrigation of patients. J Hosp Infect 1993;24:11-21.
3. Jumaa P, Chattopadhyay B. Outbreak of gentamicin, ciprofloxacin-resistant Pseudomonas aeruginosa in an intensive care unit, traced to contaminated quivers. J Hosp Infect 1994;28:209-218.
4. Becks VE, Lorenzoni NM. Pseudomonas aeruginosa outbreak in a neonatal intensive care unit: a possible link to contaminated hand lotion. Am J Infect Control 1995;23:396-398.
5. Pittet D, Mourouga P, Perneger TV, for the Infection Control Program. Compliance with handwashing in a teaching hospital. Ann Intern Med 1999;130:126-130.
6. Krcmery V, Trupl J. Nosocomial outbreak of meropenem resistant Pseudomonas aeruginosa infections in a cancer centre. J Hosp Infect 1994;26:69-71.
7. Pliego-Castañeda A, Yáñez-Viguri JA, López-Valle T. Bacterias multirresistentes más comunes en un hospital oncológico. Rev Med IMSS 2004;42:217-226.
8. Labarca JA, Pegues DA, Wagar EA, Hindler JA, Bruckner DA. Something’s rotten: a nosocomial outbreak of malodorous Pseudomonas aeruginosa. Clin Infect Dis 1998;26:1440-1446.
9. Murthy R. Implementation of strategies to control antimicrobial resistance. Chest 2001;119:405S-411S.
10. Hawkey PM, Munday CJ. Multiple resistance in Gram-negative bacteria. Rev Med Microbiol 2004;15:51-61.
11. National Nosocomial Infections Surveillance (NNIS). System report, data summary from January 1990-May 1999, issued June 1999. Am J Infect Control 1999;27:520-532.
12. Smith AL, Doershuk C, Goldmann D, et al. Comparison of a lactam alone versus lactam and an aminoglycoside for pulmonary exacerbation in cystic fibrosis. J Pediatr 1999;134:413-421.
13. Dellinger RP, Carlet JM, Masur H, et al; for the Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004;32:858-873.
14. Gerlach EH, Taylor RJ, Bauman B. The comparison of a manual and an automated method of routinely performed serial dilution antibiotic sensitivity test in a large hospital. Am J Clin Pathol 1969;52:748-750.
15. Jawetz E. The use of combination of antimicrobial drugs. Annu Rev Pharmacol 1968;8:151-170.
16. Oie S, Sawa A, Kamiya A, Mizumo H. In vitro effects of a combination of antipseudomonal antibiotics against multi-drug resistant Pseudomonas aeruginosa. J Antimicrob Chemother 1999;44:689-691.
17. Oie S, Vematsu T, Sawa A, Mizumo H, et al. In vitro effects of com-
binations of antipseudomonadal agents against seven strains of multi-drug resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2003;52:911-914.
18. Aaron SD, Ferris W, Henry DA, Speert DP, Mac Donald NE. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am J Respir Crit Care Med 2000;161:1206-1212.
19. Aaron AD, Ferris W, Ramotar K, Vandemheen K, Chan F, Saginur R. Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 2002;40:4172-4179.
20. Lang BJ, Aaron SD, Ferris W, Hebert PC, Mac Donald NE. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with multiresistant strains of Pseudomonas aeruginosa. Am J Respir Crit Care Med 2000;162:2241-2245.
21. Bochud P-Y, Boten M, Marchetti O, Calandra T. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med 2004;32:S495-S512.
22. Nseir S, Di Pompeo Ch, Soubrier S, et al. First-generation fluoro-
quinolone use and subsequent emergence of multiple drug-resistant bacteria in the intensive care unit. Crit Care Med 2005;33:283-289.