2005, Número 6
Correlación de edad, niveles séricos de IGF-1 e índice de masa muscular, y su influencia como determinantes de las variables isocinéticas en pacientes con osteoporosis
Coronado-Zarco R, Diez-García MP, Chávez-Arias D, León-Hernández SR, Cruz-Medina E, Arellano-Hernández A
Idioma: Español
Referencias bibliográficas: 40
Paginas: 457-463
Archivo PDF: 116.36 Kb.
RESUMEN
Introducción: la pérdida de masa ósea y muscular está relacionada con la edad. Los mecanismos por los que interactúa no han sido esclarecidos.
Objetivo: establecer la relación de la edad con los niveles de IGF-1 e índices de masa muscular esquelética y apendicular, determinando su influencia en variables isocinéticas en mujeres con osteoporosis.
Material y métodos: en 38 mujeres con osteoporosis primaria integradas a un programa de rehabilitación y que cumplían con los criterios de inclusión, se cuantificaron niveles de IGF-1. Se les realizó densitometría de cadera, columna y cuerpo completo, para calcular masa esquelética y apendicular, así como evaluación isocinética de codo y rodilla. Para el análisis estadístico se obtuvieron medidas de tendencia central, coeficiente de correlación de Pearson y regresión lineal.
Resultados: edad promedio de 65.16 años (50 a 84), índice de masa esquelética apendicular de 6.3 kg/m2 (4.3 a 8.3), índice de masa esquelética de 12.4 kg/m
2 (9.6 a 15.7) e IGF-1 promedio de 82.97 ng/ml (22 a 177). La regresión lineal predijo la densidad mineral de cadera a partir del índice de masa esquelética (p = 0.19) y la edad (p = 0.017), con r = 0.50. Algunos valores de la evaluación isocinética tuvieron una correlación positiva para IGF-1 en el pico de torque, y negativa para el trabajo con la edad. El tiempo de aceleración de rodilla tuvo una correlación positiva con la edad.
Conclusión: la osteoporosis y la sarcopenia pueden tener mecanismos patofisiológicos interrelacionados. El estudio de los factores de crecimiento en ambas patologías debe incluir la influencia que desempeñan las hormonas sexuales y las citocinas. Algunos de los valores de la evaluación isocinética están determinados por tipo de fibra muscular predominante, índices de masa esquelética y edad.
REFERENCIAS (EN ESTE ARTÍCULO)
Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RDl. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998;147(8):755-762.
2. Bross R, Javanbakht M, Bhasin S. Anabolic interventions for aging-associated sarcopenia. J Clin Endocrinol Metab 1999;84(10):3420-3430.
3. Leville SG. Musculoskeletal aging. Curr Opin Rheumatol 2004;16: 114-118.
4. Payette H, Roubenoff R, Jacques PF, Dinarello, CA, Wilsson P, Abad LW, Harris T. Insulin-like growth factor-1 and interleukin 6 predict sarcopenia in very old community-living men and women: The Framingham Heart Study. J Am Geriatr Soc 2003;51:1237-1243.
5. Rosenberg IH. Epidemiologic and methodologic problems in determining nutritional status of older persons. Am J Clin Nutr 1989; 50(suppl):1231-1233.
6. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;197:990S-991S.
7. Andersen J, Schierling P, Saltin B. Muscle, genes and athletic performance. Sci Am 2000 Sept:30-37.
8. Morley JE, Baumgartner RN, Roubenoff R, Mayer J. Sarcopenia. J Lab Clin Med 2001;137(4):231-243.
9. U. S. Departament of Health and Human Services, National Center for Health Statistics. NHANES III Reference Manuals and Reports. Hyattsville, MD: Centers for Disease Control and Prevention;1996.
10. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriat Soc 2004;52:80-85.
11. Melton LJ 3rd, Khosla S, Crowson CS, et al. Epidemiology of sarcopenia. J Am Geriatr Soc 2000;46(6):625-630.
12. Flegg JL, Lakatta ED. Role of muscle loss in the age-associated reductions in VO2max. J Appl Physiol 1988;65:1147-1151.
13. Lexell J, Henriksson-Larsen K, Wimbold B, Sjostorm M. Distribution of different fibers types in human skeletal muscles: effects of aging studied in whole muscle cross section. Muscle Nerve 1999;84(10):3420-3430.
14. Tseng BS, Marsh DR, Hamilton MT, Both FW. Strength and aerobic straining attenuate muscle wasting and improve resistence to the development of disability with aging. J Gerontol 1995;50A:113-119.
15. Proctor DN, Balagopal P, Nair KS. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr 1998;128:351S-355S.
16. Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol 1995;50A:11-16.
17. Holloszy JO. Workshop on sarcopenia: muscle atrophy in old age. J Gerontol 1995;50A:1-161.
18. Roubenoff R. The pathophysiology of wasting in the elderly. J Nutr 1999;129:256S-259S.
19. Goldspink G, Williams P, Simpson H. Gene expression in response to muscle strech. Clin Orthop Related Res 2002;403S:S146-S152.
20. Heinegard D, Lidgren L, Saxne T. Recent developments and future research in the bone and joint decade 2000-2010. Bull WHO 2003;81(9):686-687.
21. Coronado ZR, Diez GMP, León HRS, Mesina ME, Bush R, Flores O. Validación de factores de riesgo para caídas en personas femeninas mayores de 60 años. Rev Mex de Med Fis Rehab 2001;13(3):77-79.
22. Jordá MC. Ejercicio isocinético evaluación y potenciación. Fisio-
23. Urrialde JAM. Los isocinéticos y conceptos principales. Fisioterapia 1998;20:27.
24. Lin JT, Lane JM. Osteoporosis: a review. Clin Orthop Relat Res 2004;425:126-134.
25. Tovar JT, Diez P, Chavez D, León SR. Correlación del IGF-1 y la densidad ósea en pacientes mayores de 50 años del sexo femenino. Rev Mex Med Fís Rehaz 2004;16:48-52.
26. Landin-Wilhelmseni K, Wilhelmseni L, Bengtsson BA. Postmenopausal osteoporosis is more related to hormonal aberrations than to lifestyle factors. Clin Endocrinol 1999;15(4):387-394.
27. Yang SY, Alnaqeeb M, Simpson AH, et al. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 1996;17:487-495.
28. Goldspink G, Harridge SD. Growth factors and muscle ageing. Exp Gerontol 2004;39(10):1433-1438.
29. Goldspink G. Age-related muscle loss and progressive dysfunction in mechanosensitive growth factor signaling. Ann NY Acad Sci 2004;1019:294-298.
30. McKoy G, Ashley W, Mander J, et al. Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by strech and stimulation. J Physiol 1999;516:583-592.
31. Papanicolau D, Wilder RL, Manolagas SC, Chrousos GP. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 1998;28(2):127-137.
32. Piccone CM, McCawck KM, Brazeau GA. The effect of estrogen replacement in fiber type and size of fast rat muscle. Med Sci Sports Exerc 2004;36(5):s339-s340.
33. Roux S, Orcel P. Bone loss-factors that regulate osteoclast differentiation: an update. Arthritis Res 2000;2:451-456.
34. Ershler WB, Harman SM, Séller ET. Immunologic aspects of osteo-
porosis. Dev Comp Immunol 1997;21(6):487-499.
35. Pfeilschifter J, Koditz R, Pfohl M, Schatz H. Changes in proinflam-
matory cytokine activity after menopause. Endocr Rev 2002;23(1): 90-119.
36. Libanati C, Baylink DJ, Lois-Wenzel E, Srinivasan N, Mohan S. Studies on the potential mediators of skeletal changes occurring during puberty in girls. J Clin Endocrinol Metab 1999;84(8):2807-2814.
37. Ljunghall S, Johansson AG, Burman P, et al. Low plasma levels of IGF-1 in male patients with idiopathic osteoporosis. J Intern Med 1992;232:59-64.