2013, Number 3
<< Back Next >>
Perinatol Reprod Hum 2013; 27 (3)
Generalities and applications of the stem cells
Mata-Miranda M, Vázquez-Zapién GJ, Sánchez-Monroy V
Language: Spanish
References: 32
Page: 194-199
PDF size: 252.90 Kb.
ABSTRACT
A stem cell (SC) is capable to divide indefinitely and differentiate into several specialized cell types, not only morphologically but also functionally. The term of SC emerged at the late twentieth century, by histologists and embryologist Boveri and Haecker. According to their origin the SC are classified in embryonic and adult, while according to their potential and differentiation capacity, they are classified in: totipotential, pluripotential, multipotential and unipotential. The main SC features are: a) self-renewal, which is due to the telomerase activity; b) pluripotentiallity, which is their ability to differentiate into other cell types; c) low immunogenicity, due to the low expression of the major histocompatibility complex I (MHC I) and lack expression of MHCII. The major SC works have been developed with aimed to differentiate the SC
in vitro to other tissues such as pancreas, chondrocytes and cardiomyocytes among others, in other to become a cell replacement source; however, there are other applications such as gene therapy vehicle for monogenic diseases, or as a vehicle for antitumor therapies. In additions, the induced pluripotent stem cells (iPSC) technology has allowed human toxicity evaluation of various drugs.
REFERENCES
Prósper F, Gavira J, Herreros J, Rábago G, Luquin R, Moreno J et al. Trasplante celular y terapia regenerativa con células madre. An Sist Sanit Navar. 2006; 29: 219-34.
Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med. 2008; 2: 169-83.
Maehle AH: Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond. 2011; 65: 359-78.
Alison MR, Islam S. Attributes of adult stem cells. J Pathol. 2009; 217: 144-60.
Brunt K, Weisel RD, Li RK. Stem cells and regenerative medicine future perspectives. Can J Physiol Pharmacol. 2012; 90: 327-35.
Plomer A, Taymor KS, Scott CT. Challenges to human embryonic stem cell patents. Stem Cell. 2008; 2: 13-7.
Power C, Rasko J. Will Cell Reprogramming resolve the embryonic stem cell controversy? A Narrative Review. Ann Intern Med. 2011; 155: 114-21.
Hug K. Sources of human embryos for stem cell research: ethical problems and their possible solution. Medicine (Kaunas). 2005; 41: 1002-10.
Giraldo J, Madero C, Ávila M, Cuneo S, López C, Aparicio A. Artículo de revisión células madre. Rev Colomb Obst Gin. 2009; 54: 87-95.
Snyder E, Haley R. Cellular therapy: a physician’s handbook. Washington, DC: American Association of Blood Banks (AABB); 2004.
Orbay H, Tobita M, Mizuno H. Mesenchymal stem cell isolated from adipose and other tissues: basic biological properties and clinical applications. Stem cells Int. 2012; 2012: 1-9.
Prósper F, Perez A, Cosin J, Panizo A, Rifón J, Hernández M. Utilización de células madre en terapia regenerativa cardiaca. Rev Med Univ Navarra. 2002; 46: 24-8.
Yamanaka S. Induction of pluripotent stem cell from mouse fibroblasts by four transcriptions factors. Cell Prolif. 2008; 41: 51-6.
Kelly C, Flatt CC, McClenaghan NH. Stem cell based approches for the treatment of diabetes. Stem Cells Int. 2011; 2011: 1-8.
Gu E, Chen WY, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorogenicity. Theranostics. 2012; 2: 335-45.
Varela E, Schneider R, Ortega S, Blasco M. Different telomere length dynamics at the inner cell mass versus established embryonic stem (ES) cells. Proc Natl Acad Sci U S A. 2011; 108: 15207-12.
Pereira F de A, Tavares RL, Camargos AF, Silva Filho AL. Telomerase activity alterations in sequential passages of mouse stem cells. Cell Bio Int. 2012; 36: 755-7.
Donovan P, Gearhart J. The end of the beginning for pluripotent stem cells. Nature. 2001; 414: 92-7.
Ng PM, Lufkin T. Embryonic stem cells: proteins interaction networks. Biomol Concepts. 2011; 2: 13-25.
Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O et al. Nanog is the gateway to the pluripotent ground state. Cell. 2009; 138: 722-37.
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996; 183: 1797-806.
Doss M, Koehler CI, Gissel C, Hescheler J, Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med. 2004; 8: 465-73.
Asahara T, Kalka C, Isner JM. Stem cell therapy and gene transfer for regeneration. Gene Ther. 2000; 7: 451-7.
Páez D, Arévalo J, Rodríguez V. Evaluación de características morfológicas e inmunofenotipo de células madre mesenquimales en cultivo obtenidas a partir de sangre de cordón umbilical o médula ósea. Nova. 2007; 5: 114-25.
Wang Y, Han ZB, Song YP, Han ZC. Safety of mesenchymal stem cells for clinical application. Stem cells int. 2012; 2012: 1-4.
Kindt TJ, Goldsby RA, Osborne BA. Inmunología de Kuby. 6a ed. México, D.F: McGraw Hill Interamericana; 2007: 32-33.
Brunt KR, Weisel RD, Li RK. Stem cell and regenerative medicine – future perspectives. Can J Physiol Pharmacol. 2012; 90: 327-35.
Chen CW, Corcelli M, Péault B, Huard J. Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotech. 2012; 2012: 1-9.
Ku HT, Zhang N, Kubo A, O’Connor R, Mao M, Keller G et al. Commiting embryonic stem cells to early endocrine pancreas in vitro. Stem Cells. 2004; 22: 1205-17.
Jiang W, Shi Y, Zhao D, Chen S, Yong Y, Zhang J et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 2007; 17: 333-4.
Anson BD, Kolaja KL, Kamp TJ. Opportunities for human iPSC in predictive toxicology. Clin Pharmacol Ther. 2011; 89: 754-8.
Jia Q, Junyi M, Blake A. Use of pluripotent stem cell-derived cardiomycytes to understand mechanisms of cardiotoxic compounds. Cell Notes. 2009; 23: 10-12.