2008, Number 6
<< Back Next >>
Rev Mex Neuroci 2008; 9 (6)
Role of serotonin in the aggressive behavior
Soria FC, Pérez VMI, Flores SME, Feria VAI
Language: Spanish
References: 53
Page: 480-489
PDF size: 98.34 Kb.
ABSTRACT
The purpose of this work was to collect and integrate the information available from different studies on the involvement of the serotonin (5-HT) in the modulation of aggressive behavior. The serotonin has been implicated in the modulation of aggression in animals and humans. The serotoninergic system in the central nervous system (CNS) has complex interactions with many neurotransmitter systems in the brain. Its localization, distribution and amazing receptor diversity makes it an appealing system for modulatory aspects in many basic behaviors, including food and water intake, sexual behavior and aggression. Not with standing decades of research into the putative role of the 5-HT in aggression, no clear picture about its specific role. Application of agonists/antagonist selective for certain subtype receptors seems a more promising approach to unraveling the role of 5-HT in aggression. Of the 14 different 5-HT receptors, the postsynaptic 5-HT1B (hetero) receptor particularly plays an important selective role in the modulation of aggression (offensive). The (postsynaptic) 5-HT1B and to a lesser extent, the 5-HT1A receptor seems to play a prominent role, at least in rodents, in the modulation of (offensive) aggression.
REFERENCES
Anderson C, Bushman B. Human aggression. Annu Rev Psychol 2002; 53: 27-51.
Kavoussi R, Armsteam P, Occaro E. The neurobiology of aggression. Psychiatry Clin Nortn Am 1997; 20: 395-403.
de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 2005; 526: 125-39.
Blair RJ. Neurocognitive models of aggression, the antisocial personality disorders and psychopathy. J Neurol Neurosurg Psychiatr 2001; 71: 727-31.
Nelson RJ, Chiavegatto S. Molecular basis of aggression. Trends Neurosci 2001; 24: 713-9.
Siegel A, Roeling TAP, Gregg TR, Kruk MR. Neuropharmacology of brain stimulation-evoqued aggression. Neurosci Biohav Rev 1999; 23: 359-89.
Siegel A. The neural bases of aggression and rage in the cat. Aggression and Violent Behavior 1997; 2: 241-71.
Halasz J, Liposits Z, Meelis W, Kruk MR, Haller J. Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport 2002; 13: 1267-70.
Sewards TV, Sewards MA. Fear and power-dominance drive motivation: neural representations and pathways mediating sensory and mnemonic inputs to premotor structure. Neurosci Biohav Rev 2002; 26: 553-79.
Holland P, Gallagher M. Amygdala circuitry in attentional and representational processes. Trends Cog Sci 1999; 3: 65-73.
Quirk GJ, Lilkhtik E, Pelletier JR, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdale output neurons. J Neuroscience 2003; 23: 8800-87.
Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neurospychopharmacol and Boil Psychiatry 2001; 25: 91- 140.
Brower MC, Price BH. Neuropsychiatry of frontal lobe dysfunction in violent criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry 2001; 71: 720-6.
Nelson RJ, Chiavegatto S. Molecular basis of aggression. Trends in Neurosciences 2001; 24: 713-9.
Törk I. Anatomy of the serotonergic system. Ann NY Acad Sci 1990; 600: 9-34.
Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992; 72: 165-229.
Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002; 71: 533-54.
Palacios JM, Waeber C, Hoyer D, Mengod G. Distribution of serotonin receptors. Ann NY Acad Sci 1990; 600: 36-52.
De Felipe J, Arellano JI, Gómez A, Azmitia EC, Muñoz A. Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 2002; 433: 148-55.
Zifa E, Fillion G. 5-Hydroxytryptamine receptors. Pharmacol Rev 1992; 44: 401-58.
Boschert U, Amara DA, Segu L, Hen R. The mouse 5- hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 1994; 58: 167-82.
Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PP, Middlemiss DN, et al. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine Neuropharmacology 1986; 25: 563-76.
Yamada J, Sugimoto Y, Yoshikawa T. Effects of adrenalectomy on hyperphagia induced by the 5-HT1A receptor agonist 8-OHDPAT and 2-deoxy-D-glucose in rats. Neuroreport 1998; 9: 1831-3.
Maswood N, Caldarola-Pastuszka M, Uphouse L. Functional integration among 5-hydroxytryptamine receptor families in the control of female rat sexual behavior. Brain Res 1998; 802: 98-103.
Buhot MC. Serotonin receptors in cognitive behaviors. Curr Op Neurobiol 1997; 7: 243-54.
Blier P, Bergeron R, de Montigny C. Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacology 1997; 16: 333-8.
Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: an animal model of anxietyrelated disorder. Proc Natl Acad Sci USA 1998; 95: 14476-81.
Coccaro EF, Murphy DL (eds.). Serotonin in major psychiatric disorders. Washington: American Psychiatric Press; 1990.
Olivier B, Young L. Animal models of aggression. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds.). Neuropsychopharmacology: The 5th Generation of Progress. Williams and Wilkins, Lippincott; 2002, p. 1699-708.
Kandel E, Schwartz J, Jessel TM (eds.). Principios de neurociencias. 4a Ed. México: McGraw Hill Interamericana; 2001.
Mann JJ. Neurobiology of suicidal behaviour. Nature Rev Neurosci 2003; 4: 819-28.
Gilliam T, Kandel ER, Jessel TM. In: Kandel ER, Schhwartz JH, Jessel TM (eds). Genes y conducta. Principios de neurociencia. México: McGraw Hill Interamericana; 2001, p. 595-617.
Mann J. Violence and aggression. In: Bloom FE, Kupfer D. (eds.). Psychopharmacology: The fourth Generation of progress. New York: Raven Press; 2004.
Matsuda T, Sakaue M, Ago Y, Sakamoto Y, Koyama Y, Baba A. Functional alteration of brain dopaminergic system in isolated aggressive mice. Nihon Shinkei Seishin Yakurigaku Zasshi 2001; 21: 71-6.
Van Erp, MM, Miczer KA. Aggressive behavior, increased accumbal dopamine and decreased cortical serotonin in rats. J Neurosci 2000; 15: 9320-5.
Ferrari PF, Van Erp AMM, Tornatzky W, Miczek KA. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 2003; 17: 371-8.
Oliver B, Mos J, Van Oorschot R, Hen R. Serotonin receptors and animal models of aggressive behaviour. Pharmacopsychiatry 1995; 28: 80-90.
De Boer SF, Lesourd SM, Mocaer E, Koolhaas JM. Somatodendritic 5-HT1A autoreceptors mediate the anti aggressive actions of 5-HT (1A) receptor agonists in rats: an ethopharmacological study with S- 15535, alnespirone, and WAY-100635. Neuropsychopharmacology 2000; 23: 20-33.
Sijbesma H, Schipper J, de Kloet ER, Mos J, van Aken H, Olivier B. Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 1991; 38: 447-58.
Nikulina EM, Miczek KA. Post- vs presinaptic sites of action of 5-HT1A and 5-HT1B receptor agonists in regulation of mouse aggressive in the rat. Eur J Pharmacol 1999; 238: 411-5.
Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H. The effects of dorsal raphe administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 1993; 238: 411-5.
Mos J, Olivier B, Poth M, van Aken H. The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl)piperazine hydrochloride and 8-hydroxy-2-(di-n-propylamino)tetralin on resident intruder aggression in the rat. Eur J Pharmacol 1992; 212: 295-8.
Bannai M, Fish EW, Faccidomo S, Miczek KA. Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology (Berl) 2007; 193: 295-304.
Veiga CP, Miczek KA, Lucion AB, Almeida RM. Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz J Med Biol Res 2007; 40: 825-30.
de Boer SF, Lesourd M, Mocaër E, Koolhaas JM. Somatodendritic 5- HT (1A) autoreceptors mediate the anti-aggressive actions of 5-HT(1A) receptor agonists in rats: an ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 2000; 23: 20-33.
Olivier B, Mos J, Rasmussen D. Behavioural pharmacology of the serenic, eltoprazine. Drug Metabol Drug Interact 1990; 8: 31-83.
de Almeida RM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA. Zolmitriptan-a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology (Berl) 2001; 157: 131-41.
Pattij T, Broersen LM, Peter S, Olivier B. Impulsive-like behavior in differential-reinforcement-of-low-rate 36 s responding in mice depends on training history. Neurosci Lett 2004; 354: 169-71.
Miczek KA, Fish EW, De Bold JF, De Almeida RM. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology 2002; 163: 434-58.
Popova NK. From genes to aggressive behavior: the role of serotonergic system. Bioessays 2006; 28: 495-503.
Cherek DR, Lane SD, Pietras CJ, Steinberg JL. Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology (Berl) 2002; 159: 266-74.
Mitchell PJ. Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 2005; 526: 147-62.
Holmes A, Murphy DL, Crawley JN. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 2003; 54: 953-9.