2012, Number 2
<< Back
TIP Rev Esp Cienc Quim Biol 2012; 15 (2)
La ubiquitinación: un sistema de regulación dinámico de los organismos
Zamudio-Arroyo JM, Peña-Rangel MT, Riesgo-Escovar JR
Language: Spanish
References: 67
Page: 133-141
PDF size: 139.57 Kb.
ABSTRACT
Regulation of genetic expression occurs at different levels, from transcriptional control to post-translational
modification of proteins. Ubiquitination is one such late process, where target proteins are labeled covalently
on a lysine residue with one or more ubiquitin moieties. Ubiquitin itself is a small protein. This mechanism is
evolutionarily conserved, present to some degree in bacteria. In eukaryotes, it is organized around three
conserved enzymes: E1, an activation enzyme, E2 a conjugation enzyme, and E3, a ligation enzyme. This last
class is by far the most diverse, being the main one conferring specificity by guiding E2-ubiquitin complexes
to appropriate targets. Depending on the activation domain they possess, there are three classes of E3 enzymes:
RING-finger, HECT, and U-box. Ubiquitination can signal different outcomes, yet the most studied one is protein
degradation via the 26S proteasome. Studying ubiquitination in whole organisms, especially genetic model
organisms, confers many advantages, chief among them being the possibility of recording responses of
neighboring groups of cells, whether directly affected or not, by the process.
REFERENCES
Hershko, A., Ciechanover, A. & Varshavsky, A. Basic Medical Research Award. The ubiquitin system. Nat. Med. 6 (10), 1073-1081 (2000).
Burroughs, A.M., Balaji, S., Iyer, L.M. & Aravind, L. Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol. Direct 2, 2-18 (2007).
Ciechanover, A. et al. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl. Acad. Sci. USA 77 (3), 1365-1368 (1980).
Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434 (2009).
Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134 (2), 268-278 (2008).
Kulathu, Y. & Komander, D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13 (8), 508-523 (2012).
Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458 (7237), 422-429 (2009).
Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695 (1- 3), 189-207 (2004).
Hagai, T., Toth-Petroczy, A., Azia, A. & Levy, Y. The origins and evolution of ubiquitination sites. Mol. Biosyst. 8 (7), 1865- 1877 (2012).
Hatakeyama, S. & Nakayama, K.I. U-box proteins as a new family of ubiquitin ligases. Biochem. Biophys. Res. Commun. 302 (4), 635-645 (2003).
Hicks, S.W. & Galan, J.E. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 13 (1), 1-12 (2010).
Freemont, P.S., Hanson, I.M. & Trowsdale, J. A novel cysteine-rich sequence motif. Cell 64 (3), 483-484 (1991).
Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3 (1), e1487 (2008).
Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2 (3), 169-178 (2001).
Lorick, K.L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96 (20), 11364-11369 (1999).
Joazeiro, C.A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286 (5438), 309-312 (1999).
Fang, S. et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J .Biol. Chem. 275 (12), 8945-8951 (2000).
Lahav-Baratz, S., Sudakin, V., Ruderman, J.V. & Hershko, A. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc. Natl. Acad. Sci. USA 92 (20), 9303-9307 (1995).
Yang, Y. et al. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288 (5467), 874-877 (2000).
Turner, G.C., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405 (6786), 579-583 (2000).
Rape, M., Reddy, S.K. & Kirschner, M.W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124 (1), 89-103 (2006).
Linares, L.K. et al. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl. Acad. Sci. USA 100 (21), 12009-12014 (2003).
Kaido, M., Wada, H., Shindo, M. & Hayashi, S. Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila. Genes Cells 14 (9), 1067-1077 (2009).
Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4 (3), 222-231 (2002).
Figueroa, A. et al. Novel roles of hakai in cell proliferation and oncogenesis. Mol. Biol. Cell 20 (15), 3533-3542 (2009).
Tacchi, L., Bickerdike, R., Secombes, C.J. & Martin, S.A. Musclespecific RING finger (MuRF) cDNAs in Atlantic salmon (Salmo salar) and their role as regulators of muscle protein degradation. Mar. Biotechnol. (NY) 14 (1), 35-45 (2012).
Mizuno, Y., Hattori, N. & Matsumine, H. Neurochemical and neurogenetic correlates of Parkinson’s disease. J. Neurochem. 71 (3), 893-902 (1998).
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25 (3), 302-305 (2000).
Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92 (11), 5249-5267 (1995).
Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286 (5443), 1321-1326 (1999).
Plant, P.J. et al. Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149 (7), 1473-1484 (2000).
Staub, O. et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J. 15 (10), 2371-2380 (1996).
Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105 (2), 245-255 (2001).
Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10 (6), 398-409 (2009).
Debonneville, C. et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20 (24), 7052-7059 (2001).
Snyder, P.M., Olson, D.R. & Thomas, B.C. Serum and glucocorticoidregulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 277 (1), 5-8 (2002).
Gallagher, E., Gao, M., Liu, Y. C. & Karin, M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc. Natl. Acad. Sci. USA 103 (6), 1717-1722 (2006).
Wiesner, S. et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130 (4), 651-662 (2007).
Kee, Y., Lyon, N. & Huibregtse, J.M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 24 (13), 2414-2424 (2005).
Vu, T.H. & Hoffman, A.R. Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat. Genet. 17 (1), 12- 13 (1997).
Rougeulle, C., Glatt, H. & Lalande, M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat. Genet. 17 (1), 14-15 (1997).
Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15 (1), 70-73 (1997).
Wu, Y. et al. A Drosophila model for Angelman syndrome. Proc. Natl. Acad. Sci. USA 105 (34), 12399-12404 (2008).
Azevedo, C., Santos-Rosa, M.J. & Shirasu, K. The U-box protein family in plants. Trends Plant. Sci. 6 (8), 354-358 (2001).
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22(22), 4673-4680 (1994).
Hatakeyama, S. et al. U box proteins as a new family of ubiquitinprotein ligases. J. Biol. Chem. 276 (35), 33111-33120 (2001).
Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96 (5), 635-644 (1999).
Patterson, C. A new gun in town: the U box is a ubiquitin ligase domain. Sci. STKE 2002 (116), pe4 (2002).
Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270 (29), 17442-17456 (1995).
Pukatzki, S., Tordilla, N., Franke, J. & Kessin, R.H. A novel component involved in ubiquitination is required for development of Dictyostelium discoideum. J. Biol. Chem. 273 (37), 24131-24138 (1998).
Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8 (2), 65-71 (1998).
Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90 (5), 871-882 (1997).
Contino, G. et al. Expression analysis of the gene encoding for the U-box-type ubiquitin ligase UBE4A in human tissues. Gene 328, 69-74 (2004).
Schnell, J.D. & Hicke, L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278 (38), 35857- 35860 (2003).
Peters, J.M., Franke, W.W. & Kleinschmidt, J.A. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J. Biol. Chem. 269 (10), 7709-7718 (1994).
Tamura, N., Lottspeich, F., Baumeister, W. & Tamura, T. The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. Cell 95 (5), 637- 648 (1998).
Blondel, M. et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J. 19 (22), 6085-6097 (2000).
Lenk, U. & Sommer, T. Ubiquitin-mediated proteolysis of a shortlived regulatory protein depends on its cellular localization. J. Biol. Chem. 275 (50), 39403-39410 (2000).
Floyd, Z.E. et al. The nuclear ubiquitin-proteasome system degrades MyoD. J. Biol. Chem. 276 (25), 22468-22475 (2001).
Hochstrasser, M. Introduction to intracellular protein degradation. Chem. Rev. 109 (4), 1479-1480 (2009).
Hurley, J.H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399 (3), 361-372 (2006).
Dino Rockel, T. & von Mikecz, A. Proteasome-dependent processing of nuclear proteins is correlated with their subnuclear localization. J. Struct. Biol. 140 (1-3), 189-199 (2002).
Fenteany, G. et al. Inhibition of proteasome activities and subunitspecific amino-terminal threonine modification by lactacystin. Science 268 (5211), 726-731 (1995).
Celniker, S.E. & Rubin, G.M. The Drosophila melanogaster genome. Annu. Rev. Genomics Hum. Genet.4, 89-117 (2003).
Fortini, M.E. Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16 (5), 633-647 (2009).
Fischer-Vize, J.A., Rubin, G.M. & Lehmann, R. The fat facets gene is required for Drosophila eye and embryo development. Development 116 (4), 985-1000 (1992).
Millard, S.M. & Wood, S.A. Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes. J. Cell. Biol. 173 (4), 463-468 (2006).