2013, Number 1
<< Back
TIP Rev Esp Cienc Quim Biol 2013; 16 (1)
Evitando el incesto en las plantas: control genético y bioquímico
García-Valencia LE, Bravo-Alberto CE, Cruz-García F
Language: Spanish
References: 51
Page: 57-65
PDF size: 215.50 Kb.
ABSTRACT
To avoid endogamy many flowering plants evolved a mechanism to recognize and reject their self-pollen, which
is known as self-incompatibility (SI) system. In many cases the SI is genetically controlled by a single and highly
polymorphic locus known as the S-locus. This DNA region carries two tightly linked transcriptional units. One
of them encodes the female determinant (pistil expressed) and the second one the male determinant (pollen
expressed). In this review, we discuss the most relevant advances in the SI mechanism in
S-RNase based systems,
which are present in Solanaceae, Rosaceae and Plantaginaceae. In these families, the female determinant
encodes a ribonuclease named S-RNase and the male determinant encodes a protein called SLF/SFB (
S-locus
F-Box). We finally describe the role of the role of modifier genes, not coded by S-locus, in the pollen rejection
response and propose a model including the main events so far described.
REFERENCES
Hunter, P. Me, myself and I. The genetics and molecular biology behind self-incompatibility and the avoidance of inbreeding in plants. EMBO Rep. 10(12), 1297-1300 (2009).
De Nettancourt, D. Incompatibility and incongruity in wild and cultivated plants (Heidelberg Springer, New York, 2001).
Darwin, C. The Effect of Cross and Self-fertilization in the Vegetable Kingdom (John Murray, London, 1876).
Cruz-García, F. & McClure, B. in Current Trends in the Embryology of Angiosperms (ed. Bhojwani, S.S. & Soh, W.Y.) 167-196 (Kluwer Academic Publishers, Netherlands, 2001).
Dickinson, H., Crabbe, M. & Gaude, T. Sporophytic selfincompatibility systems: S gene products. Int. Rev. Cytol. 140, 525-561 (1992).
Newbigin, E., Anderson, M. & Clarke, A. Gametophytic selfincompatibility systems. Plant Cell 5, 1315-1324 (1993).
Nasrallah, J. & Nasrallah, M. Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell 5, 1325- 1335 (1993).
Takayama, S. & Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 15, 467-487 (2005).
Franklin-Tong. Self-incompatibility in flowering plants: evolution, diversity and mechanism (Heidelberg Springer, Berlin, 2008).
McClure, B. Darwin's foundation for investigating selfincompatibility and the progress toward a physiological model for S-RNase-based SI. J. Exp. Bot. 60, 1069-1081 (2009).
McClure, B., Cruz-García, F. & Romero, C. Compatibility and incompatibility in S-RNase-based systems. Ann. Bot. 108(4), 647-658 (2011).
Bredimeijer, G. & Blaas, J. S-Specific proteins in styles of selfincompatible Nicotiana alata. Theor. Appl. Genet. 59, 185-190 (1981).
McClure, B. et al. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature342, 955- 957 (1989).
Huang, S., Lee, H., Karunanandaa, B. & Kao, T. Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell 6(7), 1021-1028 (1994).
Lee, H.S., Huang, S. & Kao, T. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367, 560-563 (1994).
Murffet, J., Atherton, T., Mou, B., Gasser, C. & McClure, B. SRNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367, 563-566 (1994).
Murffet, J. et al. S-RNase and inter-specific pollen rejection in the genus Nicotiana: multiple pollen- rejection pathways contribute to unilateral incompatibility between self- incompatible and self-compatible species. Plant Cell 8, 943- 958 (1996).
Ioerger, T., Gohlke, J., Xu, B. & Kao, T. Primary structural features of the self-incompatibility protein in Solanaceae. Sex. Plant Reprod. 4, 81-87 (1991).
Goldraij, A. et al. Compartamentalization of S-RNase and HT-B degradation in self compatible Nicotiana. Nature 439, 805-810 (2006).
Ushijima, K. et al. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J. 39(4), 573-586 (2004).
Qiao, H. et al. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16, 582-595 (2004).
Sijacic, P. et al. Identification of the pollen determinant of S-RNasemediated self incompatibility. Nature 429, 302- 305 (2004).
Ikeda, K. et al. Primary structural features of S-haplotype-specific F box protein, SFB, in Prunus. Sex. Plant Reprod. 16, 235-243 (2004).
Yamame, H. & Tao, R. Molecular basis of self-(in)compatibility and current status of S-genotyping in Rosaceous fruit trees. Engei Gakkai Zasshi 78, 137-157 (2009).
Zhang, Y., Zhao, Z. & Xue, Y. Roles of proteolysis in plant selfincompatibility. Annu. Rev. Plant Biol. 60, 21- 42 (2009).
Chen, G. et al. "A life or death decision" for pollen tubes in S-RNasebased self-incompatibility. J. Exp. Bot. 61(7), 2027-2037 (2010).
Huang, J., Zhao, L,. Yang, Q. & Xue, Y. AhSSK1, a novel SKP1- like protein that interacts with the S-locus F-box protein SLF. Plant J. 46, 780-793(2006).
Hua, Z. & Kao, T. Identification and characterization of components of a putative PetuniaS-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell18, 2531-2553 (2006).
Wang, H. & Xue, Y. Subcellular localization of the S locus F-box protein AhSLF-S2 in pollen and pollen tubes of self- incompatible Antirrhinum. J. Integr. Plant Biol. 47, 76-83 (2005).
Sommer, T., Jarosch, E. & Lenk, U. Compartment-specific functions of the ubiquitin-proteasome pathway. Rev. Physiol. Biochem. Pharmacol. 142, 97-160 (2001).
Kubo, K. et al. Collaborative non-self recognition system in SRNase- based Self-incompatibility. Science 330, 796-799 (2010).
McClure, B., Cruz-García, F., Beecher, B. & Sulaman, W. Factors affecting inter and intra-specific pollen rejection in Nicotiana. Ann. Bot. 85, 113-123 (2000).
McClure, B. New views of S-RNase-based self-incompatibility. Curr. Opin. Plant Biol. 9(6), 639-646 (2006).
McClure, B., Mou, B., Canevascini, S. & Bernatzky, R. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc. Nat. Acad. Sci. U.S.A. 96, 13548- 13553 (1999).
Hancock, C., Kent, L. & McClure, B. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J. 43, 716-723 (2005).
Jiménez-Durán, K. et al. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of the HT-B stability in Nicotiana pollen tubes. Plant Physiol. 161, 97-107 (2013).
Cheung, A., Wang, H. & Wu, H. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82, 383-393 (1995).
De Graaf, B., Knuiman, B., Derksen, J. & Mariani, C. Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J. Exp. Bot. 54(380), 55-63 (2003).
O'Brien, M. et al. Molecular analysis of the stylar-expressed Solanum chacoense small asparagine-rich protein family related to the HT modifier of gametophytic self- incompatibility in Nicotiana. Plant J. 32, 985-996 (2002).
Juárez-Díaz, J. et al. A novel Thioredoxin h is secreted in Nicotiana alata and reduces S-RNase in vitro. J. Biol. Chem. 281, 3418- 3424 (2006).
Kondo, K. & McClure, B. New microsome-associated HT-family proteins from Nicotiana respond to pollination and define an HT/NOD-24 protein family. Mol. Plant 1(4), 634-644 (2008).
Kondo, K. et al. Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self- incompatibility. Plant J. 29, 627-636 (2002).
Sassa, H. & Hirano, H. Identification of a new class of pistil-specific proteins of Petunia inflata that is structurally similar to, but functionally distinct from, the self-incompatibility factor HT. Mol. Genet. Genomics 275, 97-104 (2006).
Puerta, A., Ushijima, K., Koba, T. & Sassa, H. Identification and functional analysis of pistil self-incompatibility factor HT-B of Petunia. J. Exp. Bot. 60, 1309-1318 (2009).
Busot, G. et al. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue. J. Exp. Bot. 59(11), 3187-3201 (2008).
Oliva, M., Silva, M., Sallai, R., Brito, M. & Sampaio, M. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 92, 1667-1673 (2010).
Cruz-García, F., Hancock, C., Kim, D. & McClure, B. Stylar glycoproteins bind to S-RNase in vitro. Plant J. 42, 295- 304 (2005).
Guo, Y., Zhang, Y. & Xue, Y. Petunia germinating pollen S/D3 interacts with S-RNases in Petunia hybrida Vilm. J. Integr. Plant Biol. 48, 584-590 (2006).
Hua, Z.H., Fields, A. & Kao, T.H. Biochemical models for S-RNasebased self-incompatibility. Mol. Plant 1(4), 575-585 (2008).
Lee, C., Swatek, K. & McClure, B. Pollen proteins bind to the Cterminal domain of Nicotiana alata pistil arabinogalactan proteins. J. Biol. Chem. 283(40), 26965-26973 (2008).
Roldán, J., Rojas, H. & Goldraij, A. Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. Ann. Bot. 110(4),787-795 (2012).