2013, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2013; 16 (1)
Genómica de poblaciones: nada en evolución va a tener sentido si no es a la luz de la genómica, y nada en genómica tendrá sentido si no es a la luz de la evolución
Eguiarte LE, Aguirre-Liguori JA, Jardón-Barbolla L, Aguirre-Planter E, Souza V
Idioma: Español
Referencias bibliográficas: 57
Paginas: 42-56
Archivo PDF: 114.33 Kb.
RESUMEN
La teoría de la genética de poblaciones surgió hace más de 80 años y nos permite explicar los patrones de variación genética dentro
y entre las poblaciones que forman a las especies en términos de las fuerzas evolutivas. Este programa de investigación generó las
preguntas que se han abordado empíricamente mediante marcadores moleculares desde hace medio siglo. Una pregunta fundamental
ha sido hasta dónde un conjunto reducido de loci es o no representativo del efecto de las fuerzas evolutivas, sobre todo el genoma
de una especie. Esto ha llevado al desarrollo creciente de aproximaciones que permitan conocer de manera representativa los niveles
de variación genética en las poblaciones naturales, dando origen a la genómica de poblaciones. En años recientes, las técnicas de
secuenciación masiva, llamadas
Next generation sequencing, o next-gen, han permitido obtener datos de grandes secciones del
genoma de diferentes especies, sin que sea un requisito conocer marcadores previos. Así, al comparar los genomas de muchos individuos
de diferentes poblaciones, tenemos acceso al archivo de su historia evolutiva, que nos habla del complejo y dinámico balance en
el tiempo entre la selección natural y las otras fuerzas evolutivas de carácter neutral, como la deriva y el flujo génico. La existencia
de enormes cantidades de información ha requerido el desarrollo de nuevas herramientas estadísticas y bioinformáticas para su análisis.
Diversas disciplinas se han visto beneficiadas de estos desarrollos. Para la biología evolutiva se abre la posibilidad de estudiar de manera
más precisa y clara los patrones adaptativos de la variación. Tener genomas anotados y loci bien mapeados es relevante y arduo,
pero el desarrollo técnico hace que lo anterior sea cada vez más plausible, y el reto será ser capaces de plantear preguntas adecuadas
para hacer inferencias del mar de información disponible. El uso de una perspectiva evolutiva y de genética de poblaciones,
enriquecerá a la genómica, de la misma manera que los datos genómicos nos ayudarán a avanzar en el desarrollo del programa iniciado
por Theodosius Dobzhansky a mediados del siglo pasado.
REFERENCIAS (EN ESTE ARTÍCULO)
Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. The American Biology Teacher 35, 125-129 (1973).
Fisher, R.A. The genetic theory of natural selection (Oxford University Press, Oxford, UK, 1930). 318 págs.
Wright, S. Evolution in mendelian populations. Genetics 16, 97- 159 (1931).
Wright, S. The evolution of mutation, inbreeding, crossbreeding and selection in evolution. Proccedings of the sixth Internationa congress of genetics, 356-366 (1932).
Haldane, J.B.S. The causes of evolution (Longmans, Green & Co. London, UK, 1932). 222 págs.
Hedrick, P.W. Genetics of populations. 4ª edition (Jones and Bartlett publishers. Sudbury, Massachusetts, 2011). 700 págs.
Lewontin, R.C. & Hubby, J.L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595-609 (1966).
Piñero, D. & Eguiarte, L. The origin and biosystematic status of Phaseolus coccienus spp. polyanthus: electrophoretic evidence. Euphytica 37, 199-203 (1988).
Lewontin, R.C. The genetical basis of evolutionary change (Columbia Universiyt Press, New York, EUA, 1974). 346 págs.
Eguiarte, L.E. Genética de poblaciones de Astrocaryum mexicanum Liebm. en Los Tuxtlas, Veracruz. Tesis de Doctorado. UNAPyP del CCH, Centro de Ecología, UNAM, México, D.F. (1990).
Navarro-Quezada, A. et al. Genetic differentation in the Agave deserti (Agavaceae) complex in the Sonoran Desert. Heredity 90, 220-227 (2003).
Van Heerwaarden, J. et al. Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis). Molecular Ecology 19, 1162-1173 (2010).
Illumina. MaizeSNP50 BeadChip. Data Sheet: Genotyping. San Diego, EUA (2010).
Castillo-Cobián, A., Eguiarte, L.E. & Souza, V. A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: The search of the unit of selection. Proceedings of the National Academy of Sciences 102, 1542-1547 (2005).
Lewontin, R.C. El sueño del genoma humano y otras ilusiones (Barcelona, España, Ediciones Paidós, 2001). 206 págs.
Eguiarte, L.E., Souza, V. & Aguirre, X. Ecología Molecular (INE, SEMARNAT, CONABIO, UNAM. México, D.F., 2007). 594 págs.
Futuyma, D.J. Evolution (Sinauer Suderland, Mass., EUA, 2009). 633 págs.
Boyko, A.R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biology 8, e1000451 (2010).
VonHoldt, B.M. et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898-902 (2010).
Hufford, M.B. et al. Comparative population genomics of maize domestication and improvement. Nature Genetics 44, 808-813 (2012).
Tonsor, S.J. Population genomics and the causes of local differentiation. Molecular Ecology 21, 5393-5395 (2012).
Harismendy, O. et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology 10, R32 (2009).
Allendorf, F.W., Hohenlohe, P.A. & Luikart, G. Genomics and the future of conservation genetics. Nature Reviews Genetics 11, 697-709 (2010).
Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107,1- 15 (2011).
Metzker, M.L. Sequencing technologies -the next generation. Nature Reviews 11, 31-46 (2010).
Glenn, T.C. Fieldguide to next-generation DNA sequencers. Molecuar Ecology Resources 11, 759-769 (2011).
Hohenlohe, P.A. et al. Population genomics of parallel adaptation in threespine sticklebacks using sequenced RAD tags. PLos Genetics 6, e1000862 (2010).
Elshire, R.J. et al. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLosOne 6, e19379 (2011).
Baird, N.A. et al. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoSOne 3, e3376 (2008).
Lewontin, R.C. & Krakauer, J. Testing the Heterogeneity of F Values. Genetics 80, 397-398 (1975).
Wright, S. The genetical structure of populations. Annals Eugenics 15, 323-354 (1951).
Namroud, M.C. et al. Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Molecular Ecology 17, 3599-3613 (2008).
Eckert, A.J. et al. Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (Pinus taeda L., Pinaceae). Genetics 185, 969-982 (2010).
Nei, M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70, 3321- 3323 (1973).
Beaumont, M.A. Adaptation and speciation: what can FST tell us? Trends in Ecology and Evolution 20, 435-440 (2005).
Ross-Ibarra, J., Morrell, P.L. & Gaut, B.S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proceedings of the National Academy of Sciences 104, 8641- 8648 (2007).
Pyhäjärvi, T. et al. Complex patterns of local adaptation in teosinte. http://arxiv.org/abs/1208.0634 (2012).
Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (J. Murray, London, 1876). 482 págs.
Chia, J.M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics 44, 803- 807 (2012).
Eguiarte, L.E. et al. Diversidad filogenética y conservación: ejemplos a diferentes escalas y una propuesta a nivel poblacional para Agave victoria-reginae en el desierto de Chihuahaua, México. Revista Chilena de Historia Natural 72, 475-492 (1999).
Delgado, P. et al. Using phylogenetic, genetic and demographic evidence for setting conservation priorities for Mexican rare pines. Biodiversity and Conservation 17, 121-137 (2008).
Kato, T.A. et al. Origen y diversificación del maíz: una revisión analítica (UNAM, CONABIO. México, D.F, 2009) 115 págs.
Ross-Ibarra, J., Tenaillon, M.I. & Gaut, B.S. Historical divergence and gene flow in the genus Zea. Genetics 181, 1399-1413 (2009).
Van Heerwaarden, J. et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences 108, 1088-1092 (2011).
Buckler, E.S. et al. Phylogeography of the wild subspecies of Zea mays. Maydica 51, 123-134 (2006).
Fukunaga, K. et al. Genetic diversity and population structure of teosinte. Genetics 169, 2241-2254 (2005).
Moeller, D.A., Tenaillon, M.I. & Tiffin, P. Population structure and its effects on patterns of nucleotide polymorphism in the teosinte (Zea mays ssp. parviglumis). Genetics 176, 1799- 1809 (2007).
Gore, M.A. et al. A First-Generation Haplotype Map of Maize. Science 326, 1115-1117 (2009).
Tenaillon, M.I. et al. Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians. Genome Biology Evolution 3, 219- 229 (2011).
Gaut, B.S. & Ross-Ibarra, J. Perspective-selection on major components of angiosperm genomes. Science 320, 484-486 (2008).
Tinbergen, N. The study of instinct (Clarendon Press, Oxford, UK, 1951) 256 págs.
Turner, T.L. et al. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics 42, 260-263 (2010).
Sánchez-Reyes, L. Genómica de poblaciones asociada a los nichos ecológicos de Escherichia coli. Tesis de licenciatura. Facultad de Ciencias, UNAM. México, D.F. (2010).
González-González, A. et al. Hierarchical clustering of genetic diversity associated to different levels of mutation and recombination in Escherichia coli: a study based on Mexican isolates. Infection, Genetics and Evolution, doi: http://dx.doi.org/ 10.1016/j.meegid.2012.09.003 (2012).
Alcaraz, L.D. et al. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proceedings of the National Academy of Sciences 105, 5803-5808 (2008).
Alcaraz, L.D. et al. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11, 332, doi:10.1186/1471-2164-11-332 (2010).
Moreno-Letelier, A. et al. Divergence and phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: a window to an ancient ocean. Astrobiology 12(7), 674-684 (2012).