2013, Number 2
<< Back Next >>
Bol Med Hosp Infant Mex 2013; 70 (2)
In silico analysis of proteins potentially involved in fimbrial biogenesis in Helicobacter pylori
Arteaga-Resendiz NK, Velázquez-Guadarrama N, Rivera-Gutiérrez S, Olivares-Trejo JJ, Méndez-Tenorio A, Valencia-Mayoral P, López-Villegas EO, Rodríguez-Leviz A, Vigueras JC, Arellano-Galindo J, Girón J, Torres-López J
Language: Spanish
References: 34
Page: 78-88
PDF size: 553.58 Kb.
ABSTRACT
Background. Colonization and chronic infection with
Helicobacter pylori is the major contributing factor to the development of gastric cancer. A large repertoire of adhesins has been described that contribute to the adaptation of bacteria to a specific gastric niche. As in other pathogenic bacteria,
H. pylori biofilm formation is central to survival in unfavorable environments. Type IV pili or fimbriae are responsible for the adhesion of many pathogenic bacteria (e.g.,
Escherichia coli, Pseudomonas aeruginosa and
Vibrio cholerae) to various surfaces. The aim of this study was to identify and analyze genes that might encode proteins involved in the biogenesis of fimbriae on
H. pylori and characterize their expression during biofilm formation.
Methods. PSI BLAST, bioinformatics and molecular tools were used as well as the NCBI database search for sequences related to protein biogenesis of fimbriae. Multiple alignments were performed using the HMMer and T-COFFEE programs. The secondary structure prediction was performed with ANTHEPROT and the tertiary structures were predicted with the I-Tasser.
Results. We identified two counterparts—jhp0257 and HP0272—from PilN protein of
Campylobacter rectus and
Xilella fastidiosa, which is part of the machinery of assembly type IV fimbriae. Similarly, proteins jhp0887 and HP0953 showed homology from signal peptide to PilA level of
P. aeruginosa, and the HP0953 protein was overexpressed during the formation of the biofilm.
Conclusions. H. pylori possesses homologous proteins to fimbrial protein families, specifically PilN and PilA, which join type IV fimbriae in other bacteria. The latter has a higher expression level during the initial stage of the formation of biofilm.
REFERENCES
Takeuchi H, Zhang YN, Israel DA, Peek RM Jr, Kamioka M, Yanai H, et al. Effect of Helicobacter pylori cdrA on interleukin-8 secretions and nuclear factor kappa B activation. World J Gastroenterol 2012;18:425-434.
Olivares D, Gisbert JP. Factores implicados en la patogenia de la infección por Helicobacter pylori. Rev Esp Enferm Dig (Madrid) 2006;98:374-386.
Rivas F, Hernández F. Helicobacter pylori: factores de virulencia, patología y diagnóstico. Rev Biomed (México) 2000;11:187-205.
Correa P, Piazuelo MB. Evolutionary history of the Helicobacter pylori genome: implications for gastric carcinogenesis. Gut Liver 2012;6:1-28.
Sánchez-Zauco NA, Giono-Cerezo S, Maldonado-Bernal C. Receptores tipo Toll, patogénesis y respuesta inmune a Helicobacter pylori. Salud Publica Mex 2010;52:447-454.
Rasmi Y, Seyyed-Mohammadzad MH. Frequency of Helicobacter pylori and cytotoxine associated gene A antibodies in patients with cardiac syndrome X. J Cardiovasc Dis Res 2012;3:19-21.
Dorer MS, Talarico S, Salama NR. Helicobacter pylori´s unconventional role in health and disease. PLoS Pathog 2009;5:e1000544.
Testerman TL, McGee DJ, Mobley HLT. Adherence and colonization. En: Mobley HLT, Mendz GL, Hazell SL, eds. Helicobacter pylori: Physiology and Genetics. Washington: ASM Press; 2001. pp. 381-401.
Cole PS, Harwood J, Lee R, She R, Guiney DG. Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 2004;186:3124-3132.
Gamboa JL. Infección por Helicobacter pylori y enfermedad ulcerosa péptica. Univ Diag 2003;3:20-24.
Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, et al. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 2009;9:197.
Suescún AV, Cubillos JR, Zambrano MM. Genes involucrados en la biogénesis de fimbrias afectan la formación de biopelículas por parte de Klebsiella pneuomiae. Biomédica 2006;26:528-537.
Salomonsson EN, Forslund AL, Forsberg A. Type IV pili in Francisella—a virulence trait in an intracellular pathogen. Front Microbiol 2011;2:29.
Berry JL, Phelan MM, Collins RF, Adomavicius T, Tønjum T, Frye SA, et al. Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog 2012;8:e1002923.
Karuppiah V, Derrick JP. Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem 2011;286:24434-24442.
National Center for Biotechnology Information (NCBI). Disponible en: http://www.ncbi.nlm.nih.gov
National Center for Biotechnology Information (NCBI). Basic Local Alignment Search Tool (BLAST). Disponible en: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011;39(Web Server issue):W29-W37.
Howard Hughes Medical Institute. HMMER. Disponible en: http://hmmer.janelia.org
Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000;302:205-217.
Swiss Institute of Bioinformatics. TCoffee. Disponible en: http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/index.cgi?stage1=1&daction=TCOFFEE::Regular&referer0=embnet
Deléage G, Clerc FF, Roux B, Gautheron DC. ANTHEPROT: a package for protein sequence analysis using a microcomputer. Comput Appl Biosci 1988;4:351-356.
Deléage G. Institute de Biologie et Chimie des Protéines. ANTHEPROT. Disponible en: http://antheprot-pbil.ibcp.fr
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 2010;5:725-738.
Zhang Lab. I-TASSER Online. Protein Structure and Function Predictions. Disponible en: http://zhanglab.ccmb.med.umich.edu/I-TASSER/
Primer3 (v. 0.4.0) Pick primers from a DNA sequence. Disponible en: http://frodo.wi.mit.edu/; http://primer3.wi.mit.edu/
Olivares A, Trejo JO, Arellano-Galindo J, Zuñiga G, Escalona G, Vigueras JC, et al. pep27 and lytA in vancomycin-tolerant pneumococci. J Microbiol Biotechnol 2011;21:1345-1351.
Wan XF, Xu D. Computational methods for remote homolog identification. Curr Protein Pept Sci 2005;6:527-546.
Castric PA, Deal CD. Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses. Infect Immun 1994;62:371-376.
Keizer DW, Slupsky CM, Kalisiak M, Campbell AP, Crump MP, Sastry PA, et al. Structure of a pilin monomer from Pseudomonas aeruginosa. J Biol Chem 2001;276:24186-24193.
Giltner CL, van Schaik EJ, Audette GF, Kao D, Hodges RS, Hassett DJ, et al. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesion for both biotic and abiotic surfaces. Mol Microbiol 2006;59:1083-1096.
Faleiro-Naves PL. Formación de biopelículas por Escherichia coli y su correlación con factores de virulencia: prevención y actividad de antimicrobianos frente a organismos planctónicos y asociados a biopelículas. Tesis Doctoral. Facultad de Farmacia. Departamento de Microbiología I. Universidad Complutense de Madrid. Madrid; 2009.
De Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto NH, et al. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 2004;237:341-353.
Caserta R, Takita MA, Targon ML, Rosselli-Murai LK, de Souza AP, Peroni L, et al. Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 2010;76:4250-4259.