2012, Number S1
<< Back Next >>
Rev Med UV 2012; 12 (S1)
Aprendizaje visomotor en la salud y la enfermedad
Fernández RJ, Díaz R, Moreno-Briseño P, Gutiérrez GJM
Language: Spanish
References: 46
Page: 36-42
PDF size: 494.87 Kb.
ABSTRACT
The search for the neural basis of visuomotor control is currently
a high research priority because they could be used for novel
therapeutic approaches in patients with different types of motor
deficits. However, much has to be learned in relation to the
visuomotor learning process, since the way different therapeutic
interfaces function could be affected if the neural plastic changes
are not taken into account. Here we review much of the work we
have been doing in visuomotor learning in our lab. We explain
the two main optical perturbations used to challenge the
visuomotor system, which are the introduction of wedge prisms
that displace the visual field, and the introduction of dove
prisms that reverse the visual field. These two perturbations
differ in how they affect the feedbac k mechanism. While the
first produce a congruent feedback that can use the current
error correction algorithms of the system, the later led to an
incongruent feedback that is incompatible with the current
error correction system. The analysis of the effect of these
perturbations in different patient populations has advanced our
understanding of how the visuomotor system works.
REFERENCES
Fernandez-Ruiz J, Velasquez-Perez L, Diaz R, Drucker-Colin R, Perez- Gonzalez R, Canales N, et al. Prism adaptation in spinocerebellar ataxia type 2. Neuropsychologia. 2007;45(12):2692-8.
Maschke M, Gomez CM, Ebner TJ, Konczak J. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophys. 2004;91(1):230-8.
Perenin MT, Vighetto A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain. 1988;111 ( Pt 3):643-74. Epub 1988/06/01.
Ferrel C, Bard C, Fleury M. Coordination in childhood: modifications of visuomotor representations in 6- to 11-year-old children. Exp Brain Res. 2001;138(3):313-21. Epub 2001/07/20.
Held R. Plasticity in Sensory-Motor Systems. Sci Am. 1965;213(5):84-&.
Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nature Neurosci. 2000;3 Suppl:1212-7. Epub 2000/12/29.
Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):RC34. Epub 1999/10/12.
Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neurosci. 1999;2(11):1026-31. Epub 1999/10/20.
Redding GM, Rossetti Y, Wallace B. Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehav Rev. 2005;29(3):431-44. Epub 2005/04/12.
Ghahramani Z, Wolpert DM. Modular decomposition in visuomotor learning. Nature. 1997;386(6623):392-5.
Fernandez-Ruiz J, Diaz R. Prism adaptation and aftereffect: Specifying the properties of a procedural memory system. Learn Memory. 1999;6(1):47-53.
Helmholtz Hv, Southall JPC. Treatise on physiological optics. Dover ed. Mineola, NY: Dover Publications; 2005.
Harris CS. Perceptual Adaptation to Inverted, Reversed, and Displaced Vision. Psychol Rev. 1965;72(6):419-44.
Kornheiser AS. Adaptation to laterally displaced vision: a review. Psychol Bull. 1976;83(5):783-816. Epub 1976/09/01.
Redding GM, Wallace B. Prism exposure aftereffects and direct effects for different movement and feedback times. J Motoe Beh. 2000;32(1):83-99. Epub 2000/09/29.
Fernandez-Ruiz J, Diaz R, Aguilar C, Hall-Haro C. Decay of prism aftereffects under passive and active conditions. Cogn Brain Res. 2004;20(1):92-7.
Hamilton CR, Bossom J. Decay of Prism Aftereffects. J Exp Psychol. 1964;67(2):148-&.
Fernandez-Ruiz J, Hall-Haro C, Diaz R, Mischner J, Vergara P, Lopez- Garcia JC. Learning motor synergies makes use of information on muscular load. Learn Mem. 2000;7(4):193-8. Epub 2000/08/15.
Kitazawa S, Kimura T, Uka T. Prism adaptation of reaching movements: Specificity for the velocity of reaching. J Neurosci. 1997;17(4):1481- 92.
Bock O, Schneider S. Sensorimotor adaptation in young and elderly humans. Neurosci Biobehav Rev. 2002;26(7):761-7. Epub 2002/12/10.
Fernandez-Ruiz J, Hall C, Vergara P, Diaz R. Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Cogn Brain Res. 2000;9(3):223-6.
Fernandez-Ruiz J, Wang J, Aigner TG, Mishkin M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci U S A. 2001;98(7):4196-201. Epub 2001/03/29.
Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563-93.
Bossom J. The Effect of Brain-Lesions on Prism-Adaptation in Monkey. Psychon Sci. 1965;2(2):45-6.
Stern Y, Mayeux R, Hermann A, Rosen J. Prism adaptation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(12):1584-7. Epub 1988/12/01.
Weiner MJ, Hallett M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology. 1983;33(6):766-72. Epub 1983/06/01.
Canavan AG, Passingham RE, Marsden CD, Quinn N, Wyke M, Polkey CE. Prism adaptation and other tasks involving spatial abilities in patients with Parkinson’s disease, patients with frontal lobe lesions and patients with unilateral temporal lobectomies. Neuropsychologia. 1990;28(9):969-84. Epub 1990/01/01.
Paulsen JS, Butters N, Salmon DP, Heindel WC, Swenson MR. Prism adaptation in Alzheimer’s and Huntington’s disease. Neuropsychology. 1993;7(1):73.
Fernandez-Ruiz J, Diaz R, Hall-Haro C, Vergara P, Mischner J, Nunez L, et al. Normal prism adaptation but reduced after-effect in basal ganglia disorders using a throwing task. Eur J Neurosci. 2003;18(3):689-94.
Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms .1. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119:1183-98.
Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophys. 1999;81(4):1960-5. Epub 1999/04/14.
Miall RC, Silburn P. A study of motor performance and motor learning in episodic ataxia. NeuroReport. 1997;8(9-10):2159-64.
Welch RB, Goldstein G. Prism adaptation and brain damage. Neuropsychologia. 1972;10(4):387-94. Epub 1972/12/01.
Kurata K, Hoshi E. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. J Neurophys. 1999;81(4):1927-38. Epub 1999/04/14.
Bor D, Owen AM. A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cereb Cortex. 2007;17(4):778-86. Epub 2006/05/19.
Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science. 1998;279(5355):1347-51. Epub 1998/03/21.
D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J. Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res. 1998;7(1):1-13.
Gutierrez-Garralda J, Saldivar M, Fernandez-Ruiz J, editors. Characterizing how well can we remember a spatial location in our visual field. Society for Neuroscience Annual Meeting; 2008; Washington, D.C: Society for Neuroscience.
Moreno-Briseño P, Diaz R, Alonso ME, Ochoa A, Fernandez-Ruiz J, editors. Huntington’s disease patients do not adapt to incongruent error feedback Society for Neuroscience Annual Meeting; 2008; Washington, D.C.: Society for Neuroscience.
Munoz DP, Everling S. Look away: the anti-saccade task and the voluntary control of eye movement. Nature Rev Neurosci. 2004;5(3):218-28. Epub 2004/02/21.
Barrios FA, Gonzalez L, Favila R, Alonso ME, Salgado PM, Diaz R, et al. Olfaction and neurodegeneration in HD. NeuroReport. 2007;18(1):73-6. Epub 2007/01/30.
Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature. 1996;383(6601):618-21. Epub 1996/10/17.
Danckert J, Ferber S, Goodale MA. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci. 2008;28(8):1696-704.
Fernandez-Ruiz J, Goltz HC, DeSouza JF, Vilis T, Crawford JD. Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex. 2007;17(10):2283-92. Epub 2007/01/12.
Fernandez-Ruiz J, Diaz R, Moreno-Briseno P, Campos-Romo A, Ojeda R. Rapid topographical plasticity of the visuomotor spatial transformation. J Neurosci. 2006;26(7):1986-90.
Cruz-Ramirez N, Acosta-Mesa HG, Barrientos-Martinez RE, Nava- Fernandez LA. How good are the Bayesian information criterion and the minimum description length principle for model selection? A Bayesian network analysis. Lect Notes Artif Int. 2006;4293:494-504.