2012, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Representation of the development of the primary spongiosa by means of a reaction-diffusion system: a hypothesis on the onset of immature bone formation. Part 1: Model description
López-Vaca OR, Garzón-Alvarado DA
Language: Spanish
References: 24
Page: 290-296
PDF size: 78.98 Kb.
ABSTRACT
A biochemical model is presented which predicts the formation of the architecture of the primary spongiosa, based on the interaction of two molecular factors: VEGF (vascular endothelial growth factor) and MMP-13 (metalloproteinases-13). It is assumed that MMP-13 regulates cartilage degradation, and VEGF allows vascularization and the advance of the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by means of reaction-diffusion equations with Turing space parameters, and a stable spatio-temporal pattern is obtained which leads to the formation of the trabeculae present in the spongy tissue.
REFERENCES
Carter DR, Beaupré GS. Skeletal Function and Form Mechanobioloy of Skeletal Development. Aging and Regeneration. New York: Cambridge University Press; 2001.
Shapiro F. Developmental Bone Biology. Pediatric Orthopedic Deformities. 2002;953.
Shier D. Hole's Human Anatomy & Physiology. Boston: McGraw-Hill; 2001.
Roberts W. Bone development and function: genetic and environmental mechanisms. Seminars in Orthodontics. 2004;10:100-22.
Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Bioch. Biph R Biochem Bioph Res Co . 2005;328:658-65.
Goldring MB, Tsuchimochi K, Ijiri K. The Control of Chondrogenesis. J Cell Biochem . 2006;44:33-44.
Garzón-Alvarado D, Garcia Aznar J, Doblaré M. The early bone epiphysis formation: a numerical simulation. J Biomech. 2006;39:S642.
Garzón-Alvarado D, Garcia Aznar JM, Doblaré M. Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism. Computers in biology and medicine. 2009;39:554-61.
Brouwers JEM, van Donkelaar CC, Sengers BG, Huiskes R. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech . 2006;39: 2774-82.
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell B. 2008;40:46-62.
Courtin B, Perault AM, Staub JF. A Reaction-Diffusion Model for Trabecular Architecture of Embryonic Periosteal Long Bone. Complexity International. 1997;4:1-17.
Blumer MJF, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Ann Anat. 2008;190:305-15.
Garzón-Alvarado DA, Peinado Cortés LM, Cárdenas Sandoval RP. A mathematical model of epiphyseal development: hypothesis on the cartilage canals growth. Comp Meth Biomech Biomed Eng. 2010;13:765-72.
Garzón-Alvarado, DA, García-Aznar JM, Doblaré MA. Reaction-diffusion model for long bones growth. Biomech Mod Mechan 2009;8:381-95 ().
Peinado Cortés LM, Vanegas Acosta JC, Garzón Alvarado DA. A mechanobiological model of epiphysis structures formation. J. Theor Biol. 2011;287:13-25.
Van Donkelaar CC, Huiskes R. The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation. Biomech Mod Mechan. 2007;6:55-62.
Krane SM, Inada M. Matrix metalloproteinases and bone. Bone. 2008;43:7-18.
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. BBA Protein and Proteomics. 2011;1824:133-45.
Filvaroff EH. VEGF and bone. J Musc Neur Inter. 2003;3:304-7; discussion 320-1.
Turing AM. The Chemical Basis of Morphogenesis. Biol Sc. 1952;237:37-72.
Garzón-Alvarado D, Ramírez Martinez AM. A biochemical hypothesis on the formation of fingerprints using a turing patterns approach. Theor Biol Med Mod. 2011;8:24.
Garzón-Alvarado D, Velasco M, Narváez-Tovar C. Self-Assembled Scaffolds Using ReactionDiffusion Systems: a Hypothesis for Bone Regeneration. J Mech Med Biol. 2011;11:231.
Cramping EJ, Maini PK. Reactiondiffusion models for biological pattern formation. Meth Appl Mech. 2001;8:415-28.
Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. Journal of cell science. 2000;113:59-69. Pt 1.