2012, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Representación del desarrollo de la espongiosa primaria por medio de un sistema de reacción-difusión: Una hipótesis sobre el inicio de la formación de hueso inmaduro. Parte 2: Implementación numérica
López-Vaca OR, Garzón-Alvarado DA
Idioma: Español
Referencias bibliográficas: 33
Paginas: 297-307
Archivo PDF: 313.52 Kb.
RESUMEN
Se presenta la implementación numérica del modelo bioquímico descrito mediante el sistema de reacción-difusión de la parte 1. De los resultados obtenidos se puede concluir que la retroalimentación química de los 2 factores moleculares a través de un sistema de reacción-difusión (RD) con parámetros en el espacio de Turing, puede explicar la aparición de los patrones espacio-temporales encontrados en la arquitectura de la espongiosa primaria. Para la solución numérica fue usado el método de los elementos finitos junto con el método de Newton-Raphson para aproximar las ecuaciones diferenciales parciales lineales. Los patrones de osificación obtenidos pueden representar la formación de la espongiosa primaria durante la osificación endocondral.
REFERENCIAS (EN ESTE ARTÍCULO)
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. A reaction-diffusion model for long bones growth. Biomechanics and modeling in mechanobiology. 2009;8:381-95.
Garzón-Alvarado DA, Galeano Urueña CH. Mantilla González, JM. Ensayos numéricos sobre la formación de patrones de Turing bajo la acción de campos convectivos incompresibles: un acercamiento desde el problema de la cavidad. Ingeniería. 2010;14:239-60.
Turing AM. The Chemical Basis of Morphogenesis. Biological Sciences. 1952;237:37-72.
Madzvamuse A. A moving grid finite element method applied to a model biological pattern generator. Journal of Computational Physics. 2003;190: 478-500.
Madzvamuse A. Maini PK, Wathen AJ. A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. Journal of Scientific Computing. 2005;24:247-62.
Garzón-Alvarado DA, Galeano, CH, Mantilla JM. Turing pattern formation for reaction-convection-diffusion systems in fixed domains submitted to toroidal velocity fields. Applied Mathematical Modelling. 2011;35:4913-25.
Talayakyildiz F, Bellout H. Chaos in the thermal convection of a Newtonian fluid with a temperature dependent viscosity. Applied Mathematics and Computation. 2005;162:1103-18.
Maini PK. Mathematical models in morphogenesis. Mathematics inspired by biology. 1999;40:151-89.
Maini PK, Painter KJ, Nguyen Phong Chau H. Spatial pattern formation in chemical and biological systems. Journal of the Chemical Society, Faraday Transactions. 1997;93:3601-10.
Meinhardt H, Gierer A. Application of a theory of biological pattern formation based on lateral inhibition. Cell Science. 1974;15:321-46.
Vanegas J, Landinez N, Garzón D. Analysis of Turing instability in biological models. DYNA. 2009;123-34.
Garzón-Alvarado, DA. García-Aznar JM, Doblaré M. Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism. Computers in biology and medicine. 2009;39:554-61.
Mei Z. Numerical bifurcation analysis for reaction-diffusion equations. Berlin, Germany: Springer-Verlag; 2000. p. 428.
Garzón-Alvarado, DA, Velasco MA, Narváez-Tovar CA. Self-assembled Scaffolds using reaction-diffusion systems: a hypothesis for bone regeneration. Journal of Mechanics in Medicine and Biology. 2011;11:231.
Garzón-Alvarado DA, Ramírez Martinez AM. A biochemical hypothesis on the formation of fingerprints using a turing patterns approach. Theoretical biology & medical modelling. 2011;8:24.
Murray JD. Pattern formation in integrative biology: a marriage of theory and experiment. Comptes Rendus de l'Académie des Sciences. Series III. Sciences de la Vie. 2000;323:5-14.
Cramping EJ, Maini PK. Reaction-diffusion models for biological pattern formation. Methods and applications of analysis. 2001;8:415-28.
Hiltunen MO, Ruuskanen M, Huuskonen J, Mähönen AJ, Ahonen M, Rutanen J, et al. Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2003;17:1147-9.
Ruimerman R, Hilbers P, Rietbergen BV, Huiskes R. A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics. 2005,38:931-41.
Brouwers JEM, Van Donkelaar CC, Sengers BG, Huiskes R. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? Journal of biomechanics. 2006;39:2774-82.
Olszta MJ, Xingguo C, Sang SJ, Rajendra K, Yi-Yeoun K, Kaufman MJ, et al. Bone structure and formation: A new perspective. Materials Science and Engineering: Reports. 2007;58:77-116.
Segre GV, Lee K. Endochondral Bone Formation Regulation by Parathyroid Hormone-Related Peptide. Indian Hedgehog and Parathyroid Hormone. The Parathyroids: Basic and Clinical Concepts. 2001;245-60.
Ballock RT, O'Keefe RJ. The biology of the growth plate. The Journal of bone and joint surgery. American volume. 2003;85-A:715-26.
Blumer MJF, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Annals of anatomy. 2008;190:305-15.
Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. Journal of cell science. 2000;113(Pt 1):59-69.
Carter DR, Van der Meulen MC, Beaupré GS. Mechanical factors in bone growth and development. Bone. 1996;18:5S-10S.
de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix biology. Journal of the International Society for Matrix Biology. 2000;19:389-94.
Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Current Opinion in Cell Biology. 2000;13:721-27.
Huch K, Kleffner S, Stöve J, Puhl W, Günther KP, Brenner RE. PTHrP, PTHr, and FGFR3 are involved in the process of endochondral ossification in human osteophytes. Histochemistry and cell biology. 2003;119:281-7.
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams, M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. The international journal of biochemistry & cell biology. 2008;40:46-62.
Ortega N, Behonick DJ, Zena W. Matrix remodeling during endochondral ossification. Trends in Cell Biology. 2004:14:8.
Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochemical and biophysical research communications. 2005;328:658-65.
Yang X, Karsenty G. Transcription factors in bone?: developmental and pathological aspects. Trends in Molecular Medicine. 2002;8:340-45.