2012, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Una formulación preliminar de tipo electromecánica para la formación de hueso en un proceso de remodelación
Ramírez MAM, Garzón-Alvarado DA
Idioma: Español
Referencias bibliográficas: 40
Paginas: 278-289
Archivo PDF: 101.01 Kb.
RESUMEN
En este artículo se propone un modelo de remodelación ósea que tiene en cuenta los estímulos mecánicos y eléctricos. Bajo estos supuestos, se obtiene la distribución de masa que depende de las cargas mecánicas y eléctricas. El trabajo coloca de manifiesto la importancia del campo eléctrico en el proceso de remodelación y, propone la cuantificación de sus efectos para obtener un modelo aplicable a nivel clínico.
REFERENCIAS (EN ESTE ARTÍCULO)
Ganong WF, William F. Fisiologia Médica. México DF: El Manual Moderno; 2006. p. 373-86.
Cowin SC. Bone mechanics handbook. USA: CRC press; 2001.
Jacobs CR, Simo JC, Beaupre GS, Carter DR. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of biomechanics. 1997;30:603-13.
Weinans H, Huiskes R, Grootenboer H. The behavior of adaptive bone-remodeling simulation models. Journal of biomechanics. 1992;25:1425-41.
Wolff J. Das gesetz der transformation der knochen. Berlin: Hirschwald; 1892. p. 1-139.
Frost HM. The laws of bone structure. Springfield, IL: Charles C Thomas; 1964.
Frost HM. Mathematical elements of lamellar bone remodeling. Springfield, IL: Charles C Thomas; 1964.
Frost HM. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcified Tissue International. 1988;42:145-56.
Pauwels F. Gesammelte abhandlungen zur funktionellen anatomie des bewegungsapparates. Berlín: Springer-Verlag; 1965. 183-96.
Kummer B. Biomechanics of bone: Mechanical properties, functional structure, functional adaptation. En: Fung YC, Perrone N, AnlicKer M (eds.) Biomechanics: Its foundation and objectives. Englewood Cliffs (N.J.): Prentice-Hall, 1972. p. 237-71.
Cowin S. Wolffís law of trabecular architecture at remodeling equilibrium. Journal of biomechanical engineering. 1986;108:83.
Cowin S, Hegedus D. Bone remodeling I: theory of adaptive elasticity. Journal of Elasticity. 1976;6:313-26.
Cowin S, Nachlinger RR. Bone remodeling III: uniqueness and stability in adaptive elasticity theory. Journal of Elasticity. 1978;8:285-95.
Hegedus D, Cowin S. Bone remodeling II: small strain adaptive elasticity. Journal of Elasticity. 1976;6:337-52.
Gupta S. New AMR, Taylor M. Bone remodelling inside a cemented resurfaced femoral head. Clinical Biomechanics. 2006;21:594-602.
Stülpner, M., Reddy, B., Starke, G. & Spirakis, A. A three-dimensional finite analysis of adaptive remodelling in the proximal femur. Journal of biomechanics. 1997;30;1063-66.
Jonkers I, Sauwen N, Lenaerts G, Mulier M, Van de Perre G, Jaecques S. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Journal of biomechanics. 2008;41:3405-13.
García J, Doblaré M, Cegoñino J. Bone remodelling simulation: a tool for implant design. Computational materials science. 2002;25:100-114.
Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. International journal of oral and maxillofacial surgery. 2010;39:690-98.
Martin R. Targeted bone remodeling involves BMU steering as well as activation. Bone. 2007;40:1574-80.
Hernández C, Hazelwood S, Martin R. The relationship between basic multicellular unit activation and origination in cancellous bone. Bone. 1999;25:585-87.
Taylor D, Tilmans A. Stress intensity variations in bone microcracks during the repair process. Journal of theoretical biology. 2004;229:169-77.
Hernandez C, Beaupre,G, Carter D. A theoretical analysis of the changes in basic multicellular unit activity at menopause. Bone. 2003;32:357-63.
Peterson MC, Riggs MM. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone. 2010;46:49-63.
Buenzli PR, Pivonka P, Smith DW. Spatio-temporal structure of cell distribution in cortical bone multicellular units: a mathematical model. Bone. 2011; 48(4):918-26.
Ramtani S. Electro-mechanics of bone remodelling. International Journal of Engineering Science. 2008;46:1173-82.
Demiray H, Dost S. The effect of quadrupole on bone remodeling. International Journal of Engineering Science. 1996;34:257-68.
Fukada E. Yasuda I. On the piezoelectric effect of bone. J Phys Soc Japan. 1957;12:1158-62.
Aschero G, Gizdulich P, Mango F, Romano S. Converse piezoelectric effect detected in fresh cow femur bone. Journal of biomechanics. 1996;29:1169-74.
Beck BR, Qin Y, Rubin C, McLeod K, Otter M. The relationship of streaming potential magnitude to strain and periosteal modeling. Medicine & Science in Sports & Exercise. 1997;29(5):S98.
Gross D, Williams WS. Streaming potential and the electromechanical response of physiologically-moist bone. Journal of biomechanics. 1982;15:277-95.
Hung C, Allen F, Pollack S, Brighton C. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? Journal of biomechanics. 1996;29:1403-09.
Johnson MW, Chakkalakal DA, Harper RA, Katz JL. Comparison of the electromechanical effects in wet and dry bone. Journal of biomechanics. 1980;13;437-42.
Qu CY, Yu SW. The damage and healing of bone in the disuse state under mechanical and electro-magnetic loadings. Procedia Engineering. 2011;10:171-76.
Wang E, Zhao M. Regulation of tissue repair and regeneration by electric fields. Chinese Journal of Traumatology (English Edition). 2010;13:55-61.
Demiray H. Electro-mechanical remodelling of bones. International Journal of Engineering Science. 1983;21:1117-26.
Huang CP, Chen XM, Chen ZQ. Osteocyte: the impresario in the electrical stimulation for bone fracture healing. Medical hypotheses. 2008;70:287-90.
Qu C, Qin QH, Kang Y. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. Biomaterials. 2006;27:4050-57 ().
Nackenhorst U. Numerical simulation of stress stimulated bone remodeling. Technische Mechanik. 1997;17:31-40.
Oñate E. Structural analysis with the finite element method. Linear statics. Barcelona: Springer Verlag; 2009. p. 5-250,