2012, Number 2
<< Back Next >>
Biotecnol Apl 2012; 29 (2)
A microanalytical variant of the SOS Chromotest for genotoxicological evaluation of natural and synthetic products
Cuétara EB, Álvarez A, Alonso A, Vernhe M, Sánchez-Lamar A, Festary T, Rico J
Language: English
References: 23
Page: 108-112
PDF size: 118.63 Kb.
ABSTRACT
Agents that can damage the DNA in vivo have potential adverse effects on human health. They may induce transmissible mutations and cancer. SOS Chromotest is a SOS transcriptional-fusion based assay, β-galactosidase gene was located after a SOS promoter, thus its enzymatic activity indicates the level of induction of SOS response and the DNA damage produced by chemical and physical mutagens, can be estimated. We presented and evaluated a microanalytical variant of the original SOS Chromotest for detecting genotoxicity of pigmented samples. We introduced two main modifications: we changed the colorimetric substrates for fluorescent ones and we worked at micro-analytical scale. The optimal β-galactosidase substrate concentration used was 1.8 mM and 40 minutes as time reaction. This variant detected efficiently the genotoxicity of known mutagen and the natural pigmented extracts. The results are discussed in relation to the advantages to work at micronalytical scale, costs reduction, automatization of reading and its usefulness for the screening of a large variety of samples.
REFERENCES
Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA. 1973; 70(8):2281-5.
Quillardet P, Huisman O, D’Ari R, Hofnung M. SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci USA. 1982;79(19):5971-5.
Quillardet P, Hofnung M. The SOS chromotest: a review. Mutat Res. 1993; 297(3):235-79.
Zounkova R, Odraska P, Dolezalova L, Hilscherova K, Marsalek B, Blaha L. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem. 2007;26(10):2208-14.
Leet JE, Liu X, Drexler DM, Cantone JL, Huang S, Mamber SW, et al. Cytotoxic xanthones from Psorospermum molluscum from the Madagascar rain forest. J Nat Prod. 2008;71(3):460-3.
Westerink WM, Stevenson JC, Lauwers A, Griffioen G, Horbach GJ, Schoonen WG. Evaluation of the Vitotox and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development. Mutat Res. 2009;676(1-2):113-30.
Vidal LS, Alves AM, Kuster RM, Lage C, Leitao AC. Genotoxicity and mutagenicity of Echinodorus macrophyllus (chapeu-de-couro) extracts. Genet Mol Biol. 2010;33(3):549-57.
Vicuña GC, Stashenko EE, Fuentes JL. Chemical composition of the Lippia origanoides essential oils and their antigenotoxicity against bleomycin-induced DNA damage. Fitoterapia. 2010;81(5):343-49.
Afanassiev V, Sefton M, Anantachaiyong T, Barker G, Walmsley R, Wolfl S. Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances. Mutat Res. 2000;464(2):297-308.
Ichikawa K, Eki T. A novel yeast-based reporter assay system for the sensitive detection of genotoxic agents mediated by a DNA damage-inducible LexA-GAL4 protein. J Biochem. 2006;139(1):105-12.
Podgorska B, Wegrzyn G. A modified Vibrio harveyi mutagenicity assay based on bioluminescence induction. Lett Appl Microbiol. 2006;42(6):578-82.
Quillardet P, Frelat G, Nguyen VD, Hofnung M. Detection of ionizing radiations with the SOS Chromotest, a bacterial short-term test for genotoxic agents. Mutat Res. 1989;216(5):251-7.
Kozubek S, Ogievetskaya MM, Krasavin EA, Drasil V, Soska J. Investigation of the SOS response of Escherichia coli after gamma-irradiation by means of the SOS chromotest. Mutat Res. 1990;230(1):1-7.
Fuentes JL, Alonso A, Cuetara E, Vernhe M, Alvarez N, Sanchez-Lamar A, et al. Usefulness of the SOS Chromotest in the study of medicinal plants as radioprotectors. Int J Radiat Biol. 2006;82(5):323-9.
Prieto E, Cañet F. Aspectos a considerar en el dosímetro Fricke. Tecnol Quím. 1990;2:19-20.
Salvo NJ, Castillo A, Fernández A, Bouzó L, Torres K, González F. Optimización de la producción del anticuerpo monoclonal iorT3 en biorreactores de fibra hueca. Biotecnol Apl.1994;11(2):160-4.
Kevekordes S, Mersch-Sundermann V, Burghaus CM, Spielberger J, SchmeiserHH, Arlt VM, et al. SOS induction of selected naturally occurring substances in Escherichia coli (SOS chromotest). Mutat Res. 1999;445(1):81-91.
BRENDA. BRaunschweig ENzyme DAtabase. Braunschweig: Institute of Biochemistry and Bioinformatics at the Technical University of Braunschweig. c2011 - [cited 2011 Dec 15]. Available from: http://www.brenda-enzymes.org
Takimoto CH, Ng CM. Pharmacokinetics and Pharmacodynamics. In: DeVita VT, Lawrence TS, Rosenberg SA. Cancer: Principles and Practice of Oncology. 8th edition. Philadelphia: Lippincott, Williams & Wilkins; 2008. p. 392-401.
Ohta T, Nakamura N, Moriya M, Shirasu Y, Kada T. The SOS-function-inducing activity of chemical mutagens in Escherichia coli. Mutat Res. 1984;131(3-4):101-9.
Quillardet P, de Bellecombe C, HofnungM. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res. 1985;147(3):79-95.
Overbeck TL, Knight JM, Beck DJ. A comparison of the genotoxic effects of carboplatin and cisplatin in Escherichia coli. Mutat Res. 1996;362(3):249-59.
Alonso Martín A, Almeida Varela E. Las plantas como radioprotectores potenciales frente a la radiación ionizante. Nucleus. 2008;(44):3-7.