2011, Number 3
<< Back Next >>
Rev Hematol Mex 2011; 12 (3)
Micronutrients status along with hematological and biochemical parameters in sickle dubtypes: preliminary report from India
Pandey S, Ranjan R, Toteja GS, Rao S, Mishra RM, Pandey Sw, Saxena R
Language: Spanish
References: 45
Page: 131-137
PDF size: 95.05 Kb.
ABSTRACT
The objective of the study was to estimate the level of various micronutrients in sickle cell patients and to study the various biochemical and haematological parameters associated with the disease severity. Twenty five sickle cell patients and thirty controls were selected as the subjects of this study. The patients were diagnosed by HPLC. The clinical features and haematological parameters were recorded for all the patients and controls. Glucose (random), Total Bilirubin,Total protein, AST, ALT, Alkaline phosphate and CRP had been evaluated along with micronutrients; zinc, selenium ,Cu, vitamin A and Vitamin E in all the subjects.Sickle cell patients were sub typed into three groups sickle trait (N=6), sickle homozygous (N=8) and Sickle beta thal (N=11). Key enzymes of liver functioning (AST and ALT) were elevated while AST was statistically significant but ALT was non- significant (Pvalue- 0.4598). CRP, Alkaline phosphatase and random glucose levels were increased in sickle homozygous patients. Zn, Sel and Vita-A were significantly lower in sickle homozygous patients. Vitamin E was significantly reduced in sickle beta thal patient [0.418(0.327-0.756)]. Thus it was concluded that the levels of various micronutrients (Zn, Cu, Sel, Vita-A & E) were reduced in Indian SCD patients and associated significantly with the biochemical & hematological parameters and enhance the disease severity.
REFERENCES
Gray NT, Bartlett JM, Kolasa KM, et al. Nutritional status and dietary intake of children with sickle cell anemia. Am J Pediatr Hematol Oncol 1992;14:57-61.
Tangney CC, Phillips G, Bell RA, et al. Selected indices of micronutrient status in adult patients with sickle cell anemia (SCA). Am J Hematol 1989;32:161-166.
Segal JB, Miller ER III, Brereton NH, et al. Concentrations of B vitamins and homocysteine in children with sickle cell anemia. South Med J 2004;97:149-155.
Westerman MP, Zhang Y, McConnell JP, et al. Ascorbate levels in red blood cells and urine in patients with sickle cell anemia. Am J Hematol 2000;65:174-175.
Marwah SS, Blann AD, Rea C, et al. Reduced vitamin E antioxidant capacity in sickle cell disease is related to transfusion status but not to sickle crisis. Am J Hematol 2002; 69:144-146.
Zehtabchi S, Sinert R, Rinnert S, et al. Serum ionized magnesium levels and ionized calcium-to-magnesium ratios in adult patients with sickle cell anemia. Am J Hematol 2004;77:215-222.
Zemel BS, Kawchak DA, Fung EB, et al. Effect of zinc supplementation on growth and body composition in children with sickle cell disease. Am J Clin Nutr 2002;75:300-307.
Riddington C, De Franceschi L. Drugs for preventing red blood cell dehydration in people with sickle cell disease. Cochrane Database Syst Rev 2002;CD003426.
Blann AD, Marwah S, Serjeant G, et al. Platelet activation and endothelial cell dysfunction in sickle cell disease is unrelated to reduced antioxidant capacity. Blood Coagul Fibrinolysis 2003;14:255-259.
Klings ES, Farber HW. Role of free radicals in the pathogenesis of acute chest syndrome in sickle cell disease. Respir Res 2001;2:280-285.
Jaja SI, Ikotun AR, Gbenebitse S, et al. Blood pressure, hematologic and erythrocyte fragility changes in children suffering from sickle cell anemia following ascorbic acid supplementation. J Trop Pediatr 2002;48:366-370.
Ohnishi ST, Ohnishi T, Ogunmola GB. Sickle cell anemia: a potential nutritional approach for a molecular disease. Nutrition 2000;16:330-338.
De Franceschi L, Bachir D, Galacteros F, et al. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease. J Clin Invest 1997;100:1847-1852.
Muskiet FA, Muskiet FD, Meiborg G, et al. Supplementation of patients with homozygous sickle cell disease with zinc, alphatocopherol, vitamin C, soybean oil, and fish oil. Am J Clin Nutr 1991;54:736-744.
Prasad AS, Schoomaker EB, Ortega J, Brewer GJ, et al. Zinc deficiency in sickle cell disease. Clinicalchem 1975; 21:582-587.
Prasad AS. Zinc and Trace minerals. Workshop on Nutrient Metabolism in genetic Anemias, NHLBI 1999, Bethesda MD.
Natta CL, Machlin LJ, Brin M. A decrease in irreversibly sickle cell anemia patients given vitamin E. Am J Clin Nutr 1980;33:968-971.
Whethers DL. Introduction and overview of the problem. WHO Expert Committee on Malaria (1998). Technical report Series1999;889.
Sies H, Stahl W, Sevanian M. Nutritional, dietary and postprandial oxidative stress. J Nutr 2005;135(5):969-972.
Serjeant GR. The clinical features of sickle cell disease. In: Clinical Studies, ed Bearn AG, Black DAK, Hiatt HH. North- Holland Publishing Company, 4:59, Amsterdam, 1974.
Weatherall DJ, Clegg JB, Blankson J, McNeil JR. A new sickling disorder resulting from interaction of the genes of hemoglobin S and alpha-thalassaemia. Br J Hematol 1969; 17:517-526.
Afonja OA. Osteoblastic activity in sickle cell disease. Clin Chem Newsletter 1982; 3:161-163.
Singhal A, Doherty JF, Raynes JG, McAdam KPWJ, et al. Is there an acute-phase response in steady state sickle cell disease? Lancet 1993;341:651-653.
Stuart J, Stone PCW, Akinola NO, Gallimore JR, et al. Monitoring the acute phase response to vaso-occlusive crisis in sickle cell disease. J Clin Pathol 1994;47:166-169.
Jacqueline M, et al. Proinflammatory Cytokines and the Hypermetabolism of Children with Sickle Cell Disease. Experimental Biology and Medicine 2005;230:68-74.
Barrett-Conner E. Bacterial infections and sickle cell anemia: An analysis of 250 infections in 166 patients and a review of the literature. Medicine 1971;50:97-112.
Kotila T, Adedapo K, Adedapo A, Oluwasola O, et al. Liver dysfunction in steady state sickle cell disease. Ann Hepatol 2005;4(4):261-263.
Dash BP, Mitra A, Kar BC. A study on the glucose uptake, pyruvate and lactate formation in red blood cells of normal, sickle cell trait and sickle cell patients. Indian Journal of Clinlcal Biochemistry 1992;7(2):134-137.
Bieri JG, Tolliver IJ, Catiguiani GL. Simultaneous determination of alpha tocopherol and retinol in plasma and red cells by high-pressure liquid chromatography. Am J Clin Nutr 1979;32: 2143-2149.
Hargrove MD. Marked increase in serum bilirubin in sickle cell anemia. A report of 6 Patients. Digestive Diseases 1970;15(5):437-442.
Azinge EC, Bolarin DM. Osteocalcin and bone-specific alkaline phosphatase in sickle cell haemoglobinopathies. Nigerian Journal of Physiological Sciences 2006;2(1-2):21-25.
http://hdl.handle.net/1961/3586,http://dspace.wrlc.org/bitstream/1961/3586/1/Raluca%20Tavaluc%20et%20al..ppt.
Reed JD, Redding-Lallinger R, Orringer EP. Nutrition and sickle cell disease. Am J Hematol 1987;24:441-455.
Rachmilewitz EA, Shifter A, Kahane I. Vitamin E deficiency in ß-thalassemia major: Changes in hematological and biochemical parameters after a therapeutic trial with -tocopherol. Am J Clin Nutr 1979;32:1850-1858.
Bowie LJ, Carreathers SA, Wright AG. Lipid peroxidation, vitamin E, and the generation of irreversibly sickled cells in sickle cell anemia. Clin Chem 1979;25:1076-1084.
Chiu D, Vichinsky E, Yee M, Kleman K, et al. Peroxidation, vitamin E, and sickle cell anemia. Ann N Y Acad Sci 1982;82:323-335.
Leonard PJ, Losowsky MS. Effect of -tocopherol administration on red cell survival in vitamin E-deficient subjects. Am J Clin Nutr 1971;24:388-393.
Finan AC, Elmer MA, Sasanow SR, McKinney S, et al. Nutritional factor sand growth in children with sickle cell disease. Am J Dis Child 1988;142(2):237-240.
Schall JI, Zemel BS, Kawchak DA, Ohene-Frempong K, Stalling VA. A status hospitalization , and other outcome in young children with sickle cell disease. J Pediatr 2004;145(1):99-106.
Tangney CC, Phillips G, Bell RA, Fernandes P, Hopkins R, et al. Wu. Selected indices of micronutrient status in adult patients with sickle cell anemia (SCA). American Journal of Hematology 2006;32(3):161-166.
Pellegrini Braga JA, Kerbauy J, Fisberg M. Zinc, copper and iron and their interrelations in the growth of sickle cell patients. Arch Latinoam Nutr 1995;45:198-203.
Bao B, Prasad AS, Beck FWJ, et al. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 2008;152:67-80.
Alayash AI, Dafallah A, Al-Quorain A, Omer A H, Wilson MT. Zinc and copper status in patients with sickle cell anemia. Acta Haematologica 1987;77(2):87-89.
Natta CL, Chen LC, Chow CK. Selenium and glutathione peroxidase levels in sickle cell anemia. Acta Haematol 1990;83:130-132.
Okpala I. The intriguing contribution of white blood cell to sickle cell disease –a red cell disorder. Blood Rev 2004;18(1):65-73.