2011, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2011; 30 (1)
Development of computer models of bone remodeling
Velasco PMA, Garzón-Alvarado DA
Language: Spanish
References: 22
Page: 163-173
PDF size: 536.48 Kb.
ABSTRACT
The bone remodeling models used in computer simulations are reviewed. The main
variables and mathematical relations are described as well as the results of
application of each of models in the clinical practice.
REFERENCES
Estrada C, Paz AN, López LE. Ingeniería de tejido óseo: consideraciones básicas. Revista EIA. 2006;5:93-100.
Ma PX, Elisseeff J. Scaffolding in Tissue Engineering. USA: CRC Press; 2006.
Meyer U, Meyer T, Handschel J, Wiesmann HP. Fundamentals of Tissue Engineering and Regenerative Medicine. USA: Springer; 2009.
Seeman E. Bone Size, Mass, and Volumetric Density: The Importance of Structure in Skeletal Health. En: Osteoporosis in Men. The Effects of Gender on Skeletal Health. San Diego, CA: Academic Press; p. 87-109.
Tsubota K, Yusuke S, Tomonori Y, Masaki H, Akitake M, Taiji A. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. Journal of Biomechanics. 2009;42(8):1088-94.
Chen J, Liu C, You L, Simmons C. Boning up on Wolff's Law: Mechanical regulation of the cells that make and maintain bone. Journal of Biomechanics. 2010;43(1):108-18.
Hernandez C, Hazelwood S, Martin R. The relationship between basic multicellular unit activation and origination in cancellous bone. Bone. 1999;25(5):585-87.
Ruimerman R, Huiskes R. Development of a unifying theory for mechanical adaptation and maintenance of trabecular bone. Theoretical Issues in Ergonomics Science. 2005;6(3-4):225-38.
Fyhrie D, Carter D. A unifying principle relating stress to trabecular bone morphology. Journal of Orthopaedic Research. 1986;4:304-17.
Fyhrie D, Carter D. Prediction of cancellous bone apparent density with 3D stress analysis, Transactions 32nd. Annual Orthopaedic Research Society. 1986;331.
Carter D, Hayes W. The behavior of bone as a two-phase porous structure. Journal of Bone and Joint Surgery. 1977;59A:954-62.
Carter D, Van der Meulen M, Beaupré G. Mechanical factors in bone growth and development. Bone. 1996;18(1):S5-S10.
Frost HM. The laws of bone structure. Springfield, Ill: Charles C Thomas Publisher; 1964.
Huiskes R, Weinans H, Grootenboer H, Dalstra M, Fudula B, Slooff T. Adaptive Bone-Remodeling theory applied to Prosthetic-Design Analysis. J. Biomechanic. 1987;20:1135-50.
Chou H, Jagodnik J, Müftü S. Predictions of bone remodeling around dental implant systems. Journal of Biomechanics. 2008;41(6):1365-73.
Jacobs C, Simo C, Beaupré G, Carter D. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics. 1997;30(6):603-13.
Carter D, Orr T, Fyhrie D. Relationships between loading history and femoral cancellous bone architecture. Journal of Biomechanics. 1989;22(3):231-44.
Weinans H, Huiskes R, Grootenboer H. The behavior of adaptive boneremodeling simulation models. Journal of Biomechanics. 1992;25(12):1425-41.
Jacobs R, Levenston M, Beaupré G, Simo J, Carter D. Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach. Journal of Biomechanics. 1995; 28(4):449-59.
Mullender M, Huiskes R. Osteocytes and bone lining cells: Which are the best candidates for mechano-sensors in cancellous bone? Bone. 1997;20(6):527-32.
Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405:704-06.
Ruimerman R, Hilbers P, Van Rietbergen B, HuiskesR. A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics. 2005;38(4):931-41.