2011, Número 1
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2011; 30 (1)
Desarrollo de los modelos computacionales de remodelación ósea
Velasco PMA, Garzón-Alvarado DA
Idioma: Español
Referencias bibliográficas: 22
Paginas: 163-173
Archivo PDF: 536.48 Kb.
RESUMEN
Se revisan los modelos de remodelación ósea empleados en simulaciones
computacionales. Se describen sus principales variables y relaciones matemáticas
mostrando resultados de la aplicación de cada uno de los modelos en aplicaciones
clínicas.
REFERENCIAS (EN ESTE ARTÍCULO)
Estrada C, Paz AN, López LE. Ingeniería de tejido óseo: consideraciones básicas. Revista EIA. 2006;5:93-100.
Ma PX, Elisseeff J. Scaffolding in Tissue Engineering. USA: CRC Press; 2006.
Meyer U, Meyer T, Handschel J, Wiesmann HP. Fundamentals of Tissue Engineering and Regenerative Medicine. USA: Springer; 2009.
Seeman E. Bone Size, Mass, and Volumetric Density: The Importance of Structure in Skeletal Health. En: Osteoporosis in Men. The Effects of Gender on Skeletal Health. San Diego, CA: Academic Press; p. 87-109.
Tsubota K, Yusuke S, Tomonori Y, Masaki H, Akitake M, Taiji A. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. Journal of Biomechanics. 2009;42(8):1088-94.
Chen J, Liu C, You L, Simmons C. Boning up on Wolff's Law: Mechanical regulation of the cells that make and maintain bone. Journal of Biomechanics. 2010;43(1):108-18.
Hernandez C, Hazelwood S, Martin R. The relationship between basic multicellular unit activation and origination in cancellous bone. Bone. 1999;25(5):585-87.
Ruimerman R, Huiskes R. Development of a unifying theory for mechanical adaptation and maintenance of trabecular bone. Theoretical Issues in Ergonomics Science. 2005;6(3-4):225-38.
Fyhrie D, Carter D. A unifying principle relating stress to trabecular bone morphology. Journal of Orthopaedic Research. 1986;4:304-17.
Fyhrie D, Carter D. Prediction of cancellous bone apparent density with 3D stress analysis, Transactions 32nd. Annual Orthopaedic Research Society. 1986;331.
Carter D, Hayes W. The behavior of bone as a two-phase porous structure. Journal of Bone and Joint Surgery. 1977;59A:954-62.
Carter D, Van der Meulen M, Beaupré G. Mechanical factors in bone growth and development. Bone. 1996;18(1):S5-S10.
Frost HM. The laws of bone structure. Springfield, Ill: Charles C Thomas Publisher; 1964.
Huiskes R, Weinans H, Grootenboer H, Dalstra M, Fudula B, Slooff T. Adaptive Bone-Remodeling theory applied to Prosthetic-Design Analysis. J. Biomechanic. 1987;20:1135-50.
Chou H, Jagodnik J, Müftü S. Predictions of bone remodeling around dental implant systems. Journal of Biomechanics. 2008;41(6):1365-73.
Jacobs C, Simo C, Beaupré G, Carter D. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics. 1997;30(6):603-13.
Carter D, Orr T, Fyhrie D. Relationships between loading history and femoral cancellous bone architecture. Journal of Biomechanics. 1989;22(3):231-44.
Weinans H, Huiskes R, Grootenboer H. The behavior of adaptive boneremodeling simulation models. Journal of Biomechanics. 1992;25(12):1425-41.
Jacobs R, Levenston M, Beaupré G, Simo J, Carter D. Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach. Journal of Biomechanics. 1995; 28(4):449-59.
Mullender M, Huiskes R. Osteocytes and bone lining cells: Which are the best candidates for mechano-sensors in cancellous bone? Bone. 1997;20(6):527-32.
Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405:704-06.
Ruimerman R, Hilbers P, Van Rietbergen B, HuiskesR. A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics. 2005;38(4):931-41.