2011, Number 4
<< Back Next >>
Arch Neurocien 2011; 16 (4)
As underlying the neurorehabilitation from the stand from the standpoint of neuroplasticity
Doussoulin-Sanhueza MA
Language: Spanish
References: 52
Page: 216-222
PDF size: 68.21 Kb.
ABSTRACT
Motor activity of humans is based on a sensitive and motor behaviour coordinated and controlled by the central nervous
system (CNS). Over the years CNS has been considered as a static structure that does not change either functionally or
anatomically. Santiago Ramon y Cajal argued «everything can die, nothing can regenerate». Fortunately, in recent years
research in neuroscience has changed this idea dramatically. This new view is supported by the concept of «neuroplasticity»
which has become an essential element to understand processes apparently so different between them such as learning
and rehabilitation after neurological lesion.
REFERENCES
Castaño J. Plasticidad neuronal y bases científicas de la neurohabilitación. Rev Neurología 2002; 34(1):130-5.
Díaz-Arribas P, Pardo-Hervás M, Tabares-Lavado M, Ríos-Lago F. Plasticidad del sistema nervioso central y estrategias de tratamiento para la reprogramación sensoriomotora: comparación de dos casos de accidente cerebro vascular isquémico en el territorio de la arteria cerebral media. Rev Neurología 2006; 42(3):153-8.
Castillo J, Rodriguez I. Biochemical changes and inflammatory response as markers for brain ischemia: molecular markers of diagnostic utility and prognosis in Human Clinical Practice. Cerebrovas Dis 2004;17:7-18.
Ginsberg M. Injury mechanisms in the ischemic penumbra. Approaches to neuroprotection in acute ischemic stroke. Cerebrovas Dis 1997;7:7-12.
Rossini P, Caltagirone C, Castriota-Scanderbeg A, Cicinelli P, Del Gratta C, Demartin M, et al. Hand motor cortical area reorganization in stroke: a study with FMRi, MEG and TCS maps. Neuroreport 1998; 22(9):2141-6.
Gómez l. Bases neurales de la recuperación motora en lesiones cerebrales. Revista Mexicana de Neurociencia 2001; 2:216-21.
Lee R, Donkelaar P. Mechanism underlying functional recovery following stroke. Canadian Journal Neurology Science 1995; 22: 257-263.
Castillo J. Fisiopatología de la isquemia cerebral. Revista Neurología 2000; 30:459-464.
Choi D, Rothman S. The role of glutamate neurotoxicity in hypoxiaischemic neuronal death. Annals Review Neuroscience 1990; 13:171-82.
Castillo J, Dávalos A, Noya M. Progression of ischemic stroke and excitotoxic amino acids. Lancet 1997; 349:79-83.
Nishikawa Y, Takahashi T, Ogawa K. Redistribution of glutamate and GABA in the cerebral neocortex and hippocampus of the mongolian gerbil after transient ischemia. Molecular Chemistry Neuropathology 1994;22:25-41.
Sternan l, Lust WD, Ricci AJ, Ratcheson R. Role for aminobutyric acid in selective vulnerability in gerbils. Stroke 1989; 20: 281-7.
Castillo J. Luces y sombras de la neuroprotección en la isquémica cerebral. Revista de Neuro-Psiquiatría del Perú 2001;64:27-31.
Hill M, Hachinski V. Stroke treatment: time is brain. Lancet 1998; 352: 10-14.
Hossmann K. Pathophysiology and therapy of experimental stroke. Cellular and molecular neurobiology 2006;(26):7/8.
Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restorative neurology and neuroscience 2004; 22:281-99.
Astrup J, Siesjö BK, Symon l. Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 1981;12: 723-725.
Pulsinelli W. Pathophysiology of acute ischemic stroke. Lancet 1992; 339:533-536.
Touzani O, Young A, Derlon J, et al. Sequential studies of severely hypometabolic tissue volumes after permanent middle cerebral artery oclussion. A positron emission tomographic investigation in anesthetized baboons. Stroke 1995; 26: 2112-2119.
Isquemia cerebral y neuroprotección. Monografías.com Http://www.monografias.com/trabajos45/isquemia-cerebral/ isquemia- cerebral.shtml. Último acceso abril 2009.
Revista electrónica portales médicos.com. Aspectos básicos de la fisiopatología de la enfermedad cerebrovascular isquémica. Http://www.portalesmedicos.com/publicaciones. Último acceso abril 2009.
Sánchez-Chávez. J. El área penumbra. Revista Neurología 1999; 28: 810-816.
Ranson B, Sontheimer H. The neurophysiology of glial cells. Journal Clinical Neurophysiology 1992; 9: 224-251.
Carmichael S. Cellular and molecular mechanisms of neural repair after stroke making waves. Annals Neurology 2006;59:735- 742.
Dombovy M, Bach-y-Rita P. Clinical observations on recovery from stroke. Advance Neurology 1988; 47: 265-76.
Plow E, Carey J, Nudo R, Pascual-Leone A. Invasive Cortical Stimulation to Promote Recovery of Function after Stroke. A Critical Appraisal. Stroke 2009 Apr 9. Epub ahead of print
Sasaki K, Gemba H. Effects of cooling the prefrontal and prestriate cortex upon visually initiated hand movements in the monkey. Brain Research 1987; 415(2):362-6.
Brodal A. Self observation and neuro anatomical considerations after stroke. Brain 1973; 96: 675-694.
Kawaguchi S, Hirano T. Sustained structural change of GABA (A) receptor-associated protein underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. Journal Neuroscience 2007; 27(25):6788-99.
Grafman J, Litvan I. Evidence for four forms of neuroplasticity. En Grafman J, Christen y, Eds. Neuronal plasticity: building a bridge from the laboratory to the clinic. Berlin: Springer-Verlag 1999:131-9.
Schieber M. Physiological basis for functional recovery. Journal of Neurological Rehabilitation 1995; 9:65-72.
Hess G, Aizenman C, Donoghue J. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. Journal Neurophysiology 1996;75:1765-78.
Garraghty PE, Arnold LL, Wellman CL, Mowery TM. Receptor autoradiographic correlates of deafferentation-induced reorganization in adult primate somatosensory cortex. The Journal of Comparative Neurology 2006;497(4):636-45
Liepert J, Miltner W, Bauder H, Sommer M, Dettmers C, Taub E, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters 1998; 250:5-8.
Hess G, Donoghue J. Longterm potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal Neurophysiology 1994; 71: 2543-47.
Meftah F, Rispal-Padel l. Synaptic plasticity in the thalamo-cortical pathway as one of the neurobiological correlates of forelimb flexion conditioning; electrophysiological investigation on the cat. Neurophysiology 1994;72: 2631-47.
Whitlock J, Heynen A, Shuler M, Bear M. Learning induces longterm potentiation in the hippocampus. Science 2006; 313(5790):1093-7.
Bergado Rosado JA. Almaguer-Melian W. Mecanismos neuronales de neuroplasticidad. Revista Neurología 2000;31:1074-95.
Zemke A, Heagerty P, Lee C, Cramer S. Motor cortex organization after stroke is related to side of stroke and level recovery. Stroke 2003; 34:23-28.
Cramer S, Nelles G, Benson R, Kaplan J, Parker R, Kwong K et al. A functional MRI study of subjects recovered form hemiparectic stroke. Stroke 1997; 28:2518-2527.
Traversa R, Cicinalli P, Bassi A, Rossini PM, Bernardi G. Mapping of motor cortical reorganization after stroke: a brain stimulation study focal magnetic pulses. Stroke 1997; 28:110-7.
Marsden C, Deecke l, Freund H, Hallet M. The function of the supplementary motor area. In Lubasaki H, ed. Supplementary sensorimotor area. Philadelphia: Lippincott-Raven 1996;477-87.
Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson OB, Law I. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of cerebral blood flow and metabolism. 1996; 16(5):794-803.
Hubel D, Wiesel T. Early exploration of the visual cortex. Neuron 1998; 20: 401-412.
Brown C, Ping L, Boyd J, Delaney K, Murphy H. Extensive turnover of dendritic spinesand vascular remodeling in cortical tissues recovering from stroke. Journal Neuroscience 2007; 15:4101-9.
Cohen I, Ziemann U, Chen R, Classen J, Hallet M, Gerloff C, et al. Studies of neuroplasticity with transcranial magnetic stimulation. Journal Clinical Neurophysiology 1998; 15: 305-24.
Seitz R, Knorr U, Azari N, Herzog H, Freund H. Visual network activation in recovery from sensorimotor stroke. Restorative Neurology Neuroscience 1999;14: 25-33.
Weiller C, Ramsay S, Wise R, Friston K, Frackowiak R. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Annals Neurology 1993;33:181-9.
Taub G, Uswatte W, Marck M. The learned nonuse phenomenon: implications for rehabilitation. Edizioni Minerva Médica 2006: 241-255.
Liepert J, Miltner W, Bauder H, Sommer M. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters 1998; 250:5-8.
Mark V, Taub E, Morris D. Neuroplasticity and Contraint Induced Movement therapy. Europa MedicoPhysica 2006; 42:269-84.
Schaechter J, Moore C, Connell B, Rosen B, Dijkhuizen R. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain 2006; 129(10):2722-33.