2011, Number 4
<< Back Next >>
Arch Neurocien 2011; 16 (4)
K+ channels its velathionship to type my chanelo pathy in epileptogenesis
Solís H, López-Hernández E
Language: Spanish
References: 98
Page: 200-208
PDF size: 122.71 Kb.
ABSTRACT
M-type
potassium channel: channelopathie and role in epileptogenesis. Progress in the study of ion channels has made it
possible to analyze the effects of human neurological disease-causing channel mutations at the level of the single channel,
the subcellular domain, the neuronal network, and the behaving organism. Improper voltage-gated ion channels integration
could cause several types of epilepsy. Neuronal KCNQ channels, voltage-dependent potassium channels that activate
slowly but show no inactivation, correspond to the M channels that exert crucial influence over neuronal excitability. This
review covers recent studies of the M-current (I
M) and its participation over epileptogenesis. M-channels are now known to
be composed of subunits of the Kv7 (KCNQ) K
+ channel family. In humans, mutations in the Kv7.2 (KCNQ2) or Kv7.3
(KCNQ3) potassium-channel genes are associated with a form of juvenile epilepsy called benign familial neonatal convulsions
(BNFC). Transgenic mice that conditionally express dominant-negative KCNQ2 subunits in brain, are associated with
spontaneous seizures, behavioral hyperactivity and morphological changes in the hippocampus. It has been recently recognized
that channelopathies can also include aberrant ion channel function that is acquired after an insult or injury to the brain.
These acquired alterations are being investigated in animal models of temporal lobe epilepsy, where studies have shown
functional changes in voltage-gated ion channels that lead to increases in excitability. These excitability changes could be
related with I
M inhibition. Therefore, epileptic hippocampal neurons may have altered the I
M regulation.
REFERENCES
Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol 1952; 116(4):449-72.
Neher E, Sakmann B. Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Natl Acad Sci U S A 1975;72(6):2140-4.
Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 29; 260(5554):799-802.
Neher E, Sakmann B, Steinbach JH. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 1978;18;375(2):219-28.
Hoffman EP. Voltage-gated ion channelopathies: inherited disorders caused by abnormal sodium, chloride, and calcium regulation in skeletal muscle. Annu Rev Med 1995;46:431-41.
Cooper EC, Jan LY. Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc Natl Acad Sci USA 1999; 27; 96(9):4759-66.
Armijo JA, de las Cuevas I, Adín J. Canales iónicos y epilepsia. Rev Neurol 2000;30:Suppl 1:S25-41.
Campos-Castelló J, Canelón de López M, García-Fernández M. Aspectos clínicos de las canalopatías epilépticas. Rev Neurol 2000;30 Suppl 1:S42-6.
Herranz JL. Canalopatías: un nuevo concepto en la etiología de las epilepsias. Bol Pediatr 2002;42:20-30.
Rojas CV, Wang JZ, Schwartz LS, Hoffman EP, Powell BR, Brown RH Jr. A Met-to-Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis. Nature 1991;5;354(6352):387-9.
Jentsch TJ. Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 2000;1(1):21-30.
Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 2000; 23(9):393-8.
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. nternational Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 2005; 57(4):473-508.
Solís H, López-Hernández E, Cortés-Gasca D. La excitabilidad neuronal y los canales de potasio. Arch Neurocien (Mex) 2008; 13(3):195-201.
Kullmann DM. Neurological channelopathies. Annu Rev Neurosci 2010;33:151-72.
Miramontes Cruz R. Regulación del canal de K+ tipo M por receptores acoplados a la proteína G q/11 y fármacos: Estado actual y perspectivas. (Tesis). Universidad de Colima. 2001 Colima, Col.
Ackerman MJ, Clapham DE. Ion channels—basic science and clinical disease. N Engl J Med 1997;29;336(22):1575-86.
International League against Epilepsy (ILAE)/ International Bureau for Epilepsy (IBE)/ World Health Organization (WHO) Global Campaign Against Epilepsy out of the shadows. Ann Report 2001.
Brown DA, Adams PR. Muscarinic suppression of a novel voltagesensitive K+ current in a vertebrate neurone. Nature 1980; 14;283(5748):673-6.
Halliwell JV, Adams PR. Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 1982;28;250(1):71-92.
Selyanko AA, Stansfeld CE, Brown DA. Closure of potassium Mchannels by muscarinic acetylcholine-receptor stimulants requires a diffusible messenger. Proc Biol Sci 1992; 23;250 (1328):119-25.
Yue C, Yaari Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 2004; 12;24(19):4614-24.
Stansfeld CE, Marsh SJ, Gibb AJ, Brown DA. Identification of Mchannels in outside-out patches excised from sympathetic ganglion cells. Neuron 1993;10(4):639-54.
Marrion NV. Selective reduction of one mode of M-channel gating by muscarine in sympathetic neurons. Neuron. 1993 Jul;11(1):77-84.
Marrion NV. Control of M-current. Annu Rev Physiol 1997;59:483-504.
Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 1998; 4;282 (5395):1890-3.
Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 1984;354:319-31.
Madison DV, Lancaster B, Nicoll RA. Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 1987;7(3):733-41.
Brown BS, Yu SP. Modulation and genetic identification of the M channel. Prog Biophys Mol Biol 2000;73(2-4):135-66.
Leppert M, Anderson VE, Quattlebaum T, Stauffer D, O’Connell P, Nakamura Y, et al. Benign familial neonatal convulsions linked to genetic markers on chromosome 20. Nature 1989; 16;337(6208):647-8.
Ryan SG, Wiznitzer M, Hollman C, Torres MC, Szekeresova M, Schneider S. Benign familial neonatal convulsions: evidence for clinical and genetic heterogeneity. Ann Neurol 1991;29(5):469-73.
Lewis TB, Leach RJ, Ward K, O’Connell P. Ryan SG. Genetic heterogeneity in benign familial neonatal convulsions: identification of a new locus on chromosome 8q. Am J Huma Genet 1993;53(3):670-5.
Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18(1):25-9.
Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18(1):53-5.
Goldberg-Stern H, Kaufmann R, Kivity S, Afawi Z, Heron SE. Novel mutation in KCNQ2 causing benign familial neonatal seizures. Pediatr Neurol 2009;41(5):367-70.
Selyanko AA, Brown DA. Effects of membrane potential and muscarine on potassium M-channel kinetics in rat sympathetic neurones. J Physiol 1993;472:711-24.
Selyanko AA, Hadley JK, Brown DA. Properties of single M-type KCNQ2/KCNQ3 potassium channels expressed in mammalian cells. J Physiol 2001;1;534(Pt 1):15-24.
Zou A, Lin Z, Humble M, Creech CD, Wagoner PK, Krafte D, et al. Distribution and functional properties of human KCNH8 (Elk1) potassium channels. Am J Physiol Cell Physiol 2003;285(6):C1356-66. Epub 2003 Jul 30.
Devaux JJ, Kleopa KA, Cooper EC, Scherer SS. KCNQ2 is a nodal K+ channel. J Neurosci 2004;4;24(5):1236-44.
Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 2006;8;26(10):2599-613.
Chung HJ, Jan YN, Jan LY. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci USA 2006;6;103(23):8870-5. Epub 2006 May 30.
Lai XH, Zhu WM, Xu G, Yuan GG. Effect of batroxobin on K+ channel activated by Ca2+ in primary culture rat cortex neurons of rat. Sichuan Da Xue Xue Bao Yi Xue Ban 2006;37(5):687-91.
Rasmussen HB, Frokjaer-Jensen C, Jensen CS, Jensen HS, Jorgensen NK, et al. Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci 2007;15;120(Pt 6):953-63. Epub 2007 Feb 20.
Bennett V, Lambert S. Physiological roles of axonal ankyrins in survival of premyelinated axons and localization of voltage-gated sodium channels. J Neurocytol 1999;28(4-5):303-18.
Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA. Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 2008; 3;105(22):7869-74. Epub 2008 May 30.
Aiken SP, Lampe BJ, Murphy PA, Brown BS. Reduction of spike frequency adaptation and blockade of M-current in rat CA1 pyramidal neurones by linopirdine (DuP 996), a neurotransmitter release enhancer. Br J Pharmacol 1995;115(7):1163-8.
Shah MM, Mistry M, Marsh SJ, Brown DA, Delmas P. Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 2002;1;544(Pt 1):29-37.
Gu N, Vervaeke K, Hu H, Storm JF. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium afterhyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 2005;1;566(Pt 3):689-715. Epub 2005 May 12.
Gu N, Vervaeke K, Storm JF. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 2007; 1;580(Pt.3):859-82. Epub 2007 Feb 15.
Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, et al. Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 2006;22;26(47):12325-38.
Tzingounis AV, Nicoll RA. Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci USA 2008 Dec 16;105(50):19974-9. Epub 2008 Dec 5.
Levey AI, Edmundo SM, Heilman CJ, Desmond TJ, Frey KA. Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience 1994;63(1):207-21.
Rouse ST, Hamilton SE, Potter LT, Nathanson NM, Conn PJ. Muscarinic-induced modulation of potassium conductances is unchanged in mouse hippocampal pyramidal cells that lack functional M1 receptors. Neurosci Lett 2000;7;278(1-2):61-4.
Rundfeldt C, Netzer R. Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung 2000;50(12):1063-70.
Tatulian L, Delmas P, Abogadie FC, Brown DA. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 2001; 1;21(15):5535-45.
Tatulian L, Brown DA. Effect of the KCNQ potassium channel opener retigabine on single KCNQ2/3 channels expressed in CHO cells. J Physiol 2003; 15;549(Pt 1):57-63. Epub 2003 Apr 17.
Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, EI-Amraoui A, Marlin S, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999;5;96(3):437-46.
Cooper EC, Aldape KD, Abosch A, Barbaro NM, Berger MS, Peacock WS, et al. Colocalization and coassembly of two human brain Mtype potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci USA 2000;25;97(9):4914-9.
Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal Mcurrent diversity. J Biol Chem 2000;21;275(29):22395-400.
Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 2000;275(31):24089-95.
Roche JP, Westenbroek R, Sorom AJ, Hille B, Mackie K, Shapiro MS. Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br J Pharmacol 2002;137(8):1173-86.
Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Delmas P, Buckley NJ, et al. Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci 1999;15;19(18):7742-56.
Tinel N, Diochot S, Lauritzen I, Barhanin J, Lazdunski M, Borsotto M. M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Lett 2000 Sep 1;480(2-3):137-41.
Pan Z, Selyanko AA, Hadley JK, Brown DA, Dixon JE, McKinnon D. Alternative splicing of KCNQ2 potassium channel transcripts contributes to the functional diversity of M-currents. J Physiol 2001 Mar 1;531(Pt 2):347-58.
Smith JS, Iannotti CA, Dargis P, Christian EP, Aiyar J. Differential expression of kcnq2 splice variants: implications to m current function during neuronal development. J Neurosci 2001 Feb 15;21(4):1096-103.
Porter RJ, Partiot A, Sachdeo R, Nohria V, Alves WM. 205 Study Group. Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 2007;Apr 10;68(15):1197-204.
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2009 Jan;83(1):1-43. Epub 2008 Nov 12.
Luszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep 2009 Mar-Apr;61(2):197-216.
Wickenden AD, Krajewski JL, London B, Wagoner PK, Wilson WA, Clark S, et al. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator. Mol Pharmacol 2008;73(3):977-86. Epub 2007 Dec 18.
Padilla K, Wickenden AD, Gerlach AC, McCormack K. The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltagesensor domain site. Neurosci Lett 2009 Nov 13;465(2):138-42. Epub 2009 Sep 3.
Qiu C, Zeyda T, Johnson B, Hochgeschwender U, de Lecea L, Tallent MK. Somatostatin receptor subtype 4 couples to the Mcurrent to regulate seizures. J Neurosci 2008 Apr 2;28(14):3567-76.
Blom SM, Schmitt N, Jensen HS. The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes. PloS ONE 2009 Dec 11;4(12):e8251.
Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, et al. Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 2011 May 2. [Epub ahead of print].
Najm I, Ying Z, Janigro D. Mechanisms of epileptogenesis. Neurol Clin 2001 May;19(2):237-50.
JN Acharya. Recent advances in epileptogenesis. Current Science 2002; 82(6): 679-88.
Schwartzkroin PA. Role of the hippocampus in epilepsy. Hippocampus 1994;4(3):239-42.
D’Ambrosio R. The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Ther 2004;103(2):95-108.
Herrera-Peco I, Fernéndez-Millares V, Pastor J, HernandeoRequejo V, Sola RG, Alonso-Cerezo C. Factores genéticos asociados a la epilepsia del lóbulo temporal. Rev Neurol 2009; Nov 16-30; 49(10):541-6.
Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 2005;8(1):51-60. Epub 2004 Dec 19.
Herman ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology 2002; Nov 12;59(9 Suppl 5):S21-6.
Teixeira RA, Zanardi VA, Li LM, Santos SL, Cendes F. Epilepsy and destructive brain insults in early life: a topographical classification on the basis of MRI findings. Seizure 2004;13(6):383-91.
Graef JD, Godwin DW. Intrinsic plasticity in acquired epilepsy: too much of a good thing? Neuroscientist 2010;16(5):487-95. Epub 2010 Apr 20.
Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983;9(3):315-35.
Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 2008; 30;172 (2):143-57. Epub 2008 Apr 26.
Zhang W, Yamawaki R, Wen X, Uhl J, Diaz J, Prince DA, et al. Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J Neurosci 2009; Nov 11;29(45):14247-56.
Solís H, Bravo J, Galindo-Morales JA, López E. Participación de la inhibición recurrente en algunos modelos de convulsiones generalizadas. En: Feria VA, Martínez MD, Rubio DF. eds. Epilepsia aspectos neurobiológicos, médicos y sociales. México: Ediciones del Instituto Nacional de Neurología 1997;66-84.
López-Hernández E, Parra L, Bravo J, Téllez-Girón RJ, Solís H. Cambios en la excitabilidad neuronal y alteraciones en la densidad neuronal del hipocampo inducidos por isquemia focal. Arch Neurocien Mex 1997;2(2):61-6.
Solís H, López E, Parra L, Bravo J, Escobar A. Morphological and electrophysiological changes after cerebral ischemia in the rat hippocampus. Exp Neurol 1998;151(1):170-1.
Walz W. Role of glial cells in the regulation of the brain ion microenvironment. Prog Neurobiol 1989;33(4):309-33.
Fernandes MJ, Naffah-Mazzacoratti MG, Cavalheiro EA. Na+K+ ATPase activity in the rat hippocampus: a study in the pilocarpine model of epilepsy. Neurochem Int 1996;28(5-6):497-500.
Estrada FS, Hernández VS, López-Hernández E, Corona-Morales AA, Solís H, et al. Glial resilience loss in rat hippocampus is directly linked to epileptogenesis: a temporal morphometric and quantitative analysis in pilocarpine model. PLoS ONE 2011; en prensa.
Lamas JA, Selyanko AA, Brown DA. Effects of a cognition-enhancer, linopirdine (DuP 996), on M-type potassium currents (IK(M)) and some other voltage- and ligand-gated membrane currents in rat sympathetic neurons. Eur J Neurosci 1997;9(3):605-16.
Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci 2003;23(18):7227-36.
Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH, et al. Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 1984;25(6):729-40.
Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 1993;34(6):985-95.
Lemos T, Cavalheiro EA. Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 1995;102(3):423-8.
Schmidt-Kastner R, Ingvar M. Laminar damage of neurons and astrocytes in neocortex and hippocampus of rat after long-lasting status epilepticus induced by pilocarpine. Epilepsy Res Suppl 1996;12:309-16.
Gabriel S, Eilers A, Kivi A, Kovacs R, Schulze K, Lehmann TN, et al. Effects of barium on stimulus induced changes in extracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats. Neurosci Lett 1998; Feb 6;242(1):9-12.