2012, Number 2
<< Back Next >>
Cir Cir 2012; 80 (2)
Numerical-experimental study of internal fixation system “Dufoo” for vertebral fractures
Nieto-Miranda JJ, Faraón-Carbajal RM, Sánchez-Aguilar J
Language: Spanish
References: 23
Page: 193-199
PDF size: 305.68 Kb.
ABSTRACT
Background: We describe a numerical experimental study of the stress generated by the internal fixation system "Dufoo" used in the treatment of vertebral fractures with the purpose of validating the numerical model of human lumbar vertebrae under the main physiological loads that the human body is exposed to in this area. The objective is to model and numerically simulate the elements of the musculoskeletal system to collect the stresses generated and other parameters that are difficult to measure experimentally in the thoracic lumbar vertebrae.
Methods: We used an internal fixator "Dufoo" and vertebrae L2-L3-L4 specimens from pig and human. The system uses a total L3 corpectomy. The fixator acts as a mechanical bridge implant from L2 to L4. Numerical analysis was performed using the finite element method (FEM). For the experimental study, reflective photoelasticity and extensometry were used.
Results: Torsion and combined loads generate the main displacements and stresses in the study system, determining that the internal fixation carries out part of the function of the damaged organ structure when absorbing the stresses presented by applied loads.
Conclusions: Numerical analysis allows great freedom in the management of the variables involved in the developed models using radiological images. Geometric models are obtained and are entered into FEM programs that allow testing using parameters that, under actual conditions, may not be easily carried out, allowing to comprehensively determine the biomechanical behavior of the coupled system of study.
REFERENCES
Tamara-Montes NG, López-Villagómez B, Anaya-Vallejo S. Principios biomecánicos en el tratamiento de las fracturas tóraco-lumbares. Rev Mex Ortop Traum 2000;14(1):25-33.
Argoubi M, Shirazi-Adi A. Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 1996;29(10):1331-1339.
Kaigle A, Ekström L, Holm S, Rostedt M, Hansson T. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration. J Spinal Disord 1998;11(1):65-70.
Liu XC, Fabry G, Labey L, Van den Berghe L, Van Audekercker R, Molenaers G, et al. A new technique for the three-dimensional study of the spine in vitro and in vivo by using a motion-analysis system. J Spinal Disord 1997;10(4):329-338.
Lu YM, Hutton WC, Gharpuray VM. The Effect of Fluid Loss on the Viscoelastic Behavior of the Lumbar Intervertebral Disc in Compression. J Biomech Eng 1998;120(1):48-54.
Sharma M, Langrana NA, Rodriguez J. Modeling of Facet Articulation as a Nonlinear Moving Contac Problem: Sensitivity Study on Lumbar Facet Response. J Biomech Eng 1998;120(1): 118-125.
Brown T, Hanson RJ, Yorra AJ. Some mechanical test on the lumbrosacral spine with particular reference to the intervertebral disc; a preliminary report. J Bone Joint Surg Am 1957;39-A(5):1135-1164.
Hirsch C, Nachemson A. New observations on the mechanical behavior of lumbar disc. Acta Orthop Scand 1954;23(4):254-283.
Hirsch C. The mechanical response in normal and degenerated lumbar disc. J Bone Joint Surg 1956;38-A:242-243.
Hirsch C. The reaction of intervertebral disc to compression forces. J Bone Joint Surg 1955;37(6):1188-1196.
Markolf KL, Morris JM. The Structural Components of the Intervertebral Disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg 1974;56(4):675-687.
Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K. Surface Strain Distribution on Thoracic and Lumbar Vertebrae Under Axial Compression: The Role in Burst Fractures. Spine 1999;24(12):1197-1202.
Lee CK, Kim YE, Lee Cs, Hong YM, Jung JM, Goel VK. Impact Response of the Intervertebral Disc in a Finite-Element Model. Spine 2000;25(19):2431-2439.
Wang JL, Panjabi MM, Kato Y, Nguven C. Radiography cannot examine disc injuries secondary to burst fracture: quantitative discomanometry validation. Spine 2002;27(3):235-240.
Reyes-Sánchez A, Magadán SJC, Rosales OLM, Miramontes MV, Alpízar AA. Complicaciones de fracturas toracolumbares que tuvieron tratamiento por vía anterior. Un meta-análisis. Acta Médica Grupo Ángeles 2004;2(2):99-105.
Cunningham BW, Sefter JC, Shono Y, McAfee PC. Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine 1993;18(12):1677-1688.
Wheeldon JA, Pintar FA, Knowles S, Yoganandan N. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J Biomech 2006;39(2):375-380.
Tejeda BM, Anaya-Vallejo S Ramírez GR. Tratamiento Quirúrgico de las Fracturas Toracolumbares por vía Anterior. Rev Mex Ortop Traumatol 1998;12(6):511-517.
Zee M, Hansen L, Wong C, Rasmussen J, Simonsen EB. A generic detailed rigid-body lumbar spine model. J Biomech 2007;40(6):1219-1227.
Kasra M, Shirazi AA, Drouin G. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigatiosSpine 1992;17(1):93-101.
Wang JL, Parnianpour M, Shirazi AA, Engin AE, Li S, Patwardhan A. Development and validation of viscoelastic finite element model of an L2/L3 motion segment. Theor Appl Fract Mec 1997;28(1):81-93.
Rohlman A, Bergmann G, Graichen F. Loads on an internal spinal fixation device during walking. J Biomech 1997;30(1):41-47.
Damián-Noriega Z. Estudio Biomecánico Experimental del Sistema Dufoo para Columna Lumbar Lesionada. [Tesis doctoral] IPN-ESIME-SEPI 2003, México D.F. p. 77-89.