2010, Number 11-12
<< Back Next >>
Medicina & Laboratorio 2010; 16 (11-12)
Nuevas perspectivas en diagnóstico prenatal
Tangarife CV, Castro ÁJF, Maldonado EJG
Language: Spanish
References: 53
Page: 561-570
PDF size: 987.77 Kb.
ABSTRACT
Fetal abnormalities affect 1% of the newborns worldwide and have been associated with 20% of infant mortality during the first year of life. Prenatal diagnosis allows early detection of fetal or maternal abnormalities, in order to provide a better way to deal with the situation or to initiate treatment during pregnancy or after birth, even in some countries the continuation of the pregnancy is an option. This diagnosis is made by cytological and genetic analysis using invasive and noninvasive methods. Invasive methods, including amniocentesis, cordocentesis and chorionic villus biopsy, allow the extraction of material for analysis, but they can result in rupture of membranes in the mother, leading to complications such as bleeding, infections and abortions. Against this, the use of noninvasive methods has been proposed, including the study of fetal cells such as lymphocytes, erythroblasts and trophoblasts, and fetal nucleic acids (DNA and mRNA) circulating in the peripheral blood of the mother, to avoid injury of the fetus or the mother. The present article aims to review the methods used for prenatal diagnosis, their application and their development potential.
REFERENCES
Martínez M., Méndez C, Serra V, Cano F LJ, Ballesteros A, et al. Estado actual del diagnóstico genético en células fetales aisladas de la circulación materna. In: Remohí J PA, Simón C, Navarro J, ed. Reproducción Humana (ed 2). Madrid, España; 1996: 613-617.
OMS. Neonatal and perinatal mortality: http://www.who.int/reproductive-health/docs/neonatal_mortality/index.html; 2006.
Save-the-Children. State of the world’s mothers 2007. Saving the lives of mothers and newborns: http://www.savethechildren.org/campaigns/state-of-the-worlds-report/2007; 2007.
OMS. Informe sobre la salud en el mundo. Arriesgarse a morir para dar vida: http://www.who.int/whr/2005/chapter4/es/index1.html; 2005.
OPS. Estadísticas de Salud de las Américas (ed 2006): http://www.paho.org/spanish/dd/ais/hsa2006. htm; 2006.
Evans MI, Wapner RJ. Invasive prenatal diagnostic procedures 2005. Semin Perinatol 2005; 29: 215-218.
Eisenberg B, Wapner RJ. Clinical proceduress in prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 2002; 16: 611-627.
Júbiz A. Amniocentesis. In: Botero J. Júbiz A. HG, ed. Obstetricia y Ginecología (ed 7). Medellín, Colombia; 2004: 80-83.
Carrera J.M. AM, Salvador C. . Biopsia de corión. In: Carrera JM, ed. Diagnóstico prenatal. Barcelona, España: Salvat; 1987: 190-200.
Hernandez-Andrade E, Guzman Huerta M, Garcia Cavazos R, Ahued-Ahued JR. [Prenatal diagnosis in the first trimester, whom and how?]. Ginecol Obstet Mex 2002; 70: 607-612.
Rosales Aujang E, Felguerez Flores JA. [Maternal mortality. A challenge of the new millennium]. Ginecol Obstet Mex 2002; 70: 502-509.
Lo YM. Recent advances in fetal nucleic acids in maternal plasma. J Histochem Cytochem 2005; 53: 293-296.
Bianchi DW. Prenatal diagnosis by analysis of fetal cells in maternal blood. J Pediatr 1995; 127: 847-856.
Hahn S, Huppertz B, Holzgreve W. Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta 2005; 26: 515-526.
Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350: 485-487.
Bischoff FZ, Lewis DE, Simpson JL. Cell-free fetal DNA in maternal blood: kinetics, source and structure. Hum Reprod Update 2005; 11: 59-67.
Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999; 64: 218-224.
Lo YM, Lau TK, Zhang J, Leung TN, Chang AM, Hjelm NM, et al. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin Chem 1999; 45: 1747-1751.
Leung TN, Zhang J, Lau TK, Chan LY, Lo YM. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem 2001; 47: 137-139.
Zolotukhina TV, Shilova NV, Voskoboeva EY. Analysis of cell-free fetal DNA in plasma and serum of pregnant women. J Histochem Cytochem 2005; 53: 297-299.
Gonzalez-Gonzalez C, Garcia-Hoyos M, Trujillo-Tiebas MJ, Lorda-Sanchez I, de Alba MR, Infantes F, et al. Application of fetal DNA detection in maternal plasma: a prenatal diagnosis unit experience. J Histochem Cytochem 2005; 53: 307-314.
Farina A, Sekizawa A, Sugito Y, Iwasaki M, Jimbo M, Saito H, et al. Fetal DNA in maternal plasma as a screening variable for preeclampsia. A preliminary nonparametric analysis of detection rate in low-risk nonsymptomatic patients. Prenat Diagn 2004; 24: 83-86.
Heimrath J, Krawczenko A, Kozlak J, Dus D. Trophoblasts and soluble adhesion molecules in peripheral blood of women with pregnancyinduced hypertension. Am J Reprod Immunol 2004; 51: 152-155.
Sekizawa A, Jimbo M, Saito H, Iwasaki M, Sugito Y, Yukimoto Y, et al. Increased cell-free fetal DNA in plasma of two women with invasive placenta. Clin Chem 2002; 48: 353-354.
Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet 1998; 352: 1904-1905.
Zhong XY, Burk MR, Troeger C, Jackson LR, Holzgreve W, Hahn S. Fetal DNA in maternal plasma is elevated in pregnancies with aneuploid fetuses. Prenat Diagn 2000; 20: 795-798.
Lo YM, Leung TN, Tein MS, Sargent IL, Zhang J, Lau TK, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem 1999; 45: 184-188.
Lau TW, Leung TN, Chan LY, Lau TK, Chan KC, Tam WH, et al. Fetal DNA clearance from maternal plasma is impaired in preeclampsia. Clin Chem 2002; 48: 2141-2146.
Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol 2001; 184: 414-419.
Levine RJ, Qian C, Leshane ES, Yu KF, England LJ, Schisterman EF, et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol 2004; 190: 707-713.
Byrne BM, Crowley A, Taulo F, Anthony J, O’Leary JJ, O’Herlihy C. Fetal DNA quantitation in peripheral blood is not useful as a marker of disease severity in women with preeclampsia. Hypertens Pregnancy 2003; 22: 157-164.
Lee T, LeShane ES, Messerlian GM, Canick JA, Farina A, Heber WW, et al. Down syndrome and cell-free fetal DNA in archived maternal serum. Am J Obstet Gynecol 2002; 187: 1217-1221.
Poon LL, Leung TN, Lau TK, Lo YM. Presence of fetal RNA in maternal plasma. Clin Chem 2000; 46: 1832-1834.
Barrera-Saldana HA. Growth hormone and placental lactogen: biology, medicine and biotechnology. Gene 1998; 211: 11-18.
Ng EK, Leung TN, Tsui NB, Lau TK, Panesar NS, Chiu RW, et al. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem 2003; 49: 727-731.
Reimer T, Koczan D, Briese V, Friese K, Richter D, Thiesen HJ, et al. Absolute quantification of human chorionic gonadotropin-beta mRNA with TaqMan detection. 4. Mol Biotechnol 2000; 14: 47-57.
Tsui NB, Chim SS, Chiu RW, Lau TK, Ng EK, Leung TN, et al. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J Med Genet 2004; 41: 461-467.
Ng EK, Tsui NB, Lau TK, Leung TN, Chiu RW, Panesar NS, et al. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci U S A 2003; 100: 4748-4753.
Farina A, Chan CW, Chiu RW, Tsui NB, Carinci P, Concu M, et al. Circulating corticotropinreleasing hormone mRNA in maternal plasma: relationship with gestational age and severity of preeclampsia. Clin Chem 2004; 50: 1851-1854.
Goldberg JD. Fetal cells in maternal circulation: progress in analysis of a rare event. Am J Hum Genet 1997; 61: 806-809.
Hahn S, Sant R, Holzgreve W. Fetal cells in maternal blood: current and future perspectives. Mol Hum Reprod 1998; 4: 515-521.
Bischof P, Irminger-Finger I. The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol 2005; 37: 1-16.
Hahn S, Holzgreve W. Fetal cells and cell-free fetal DNA in maternal blood: new insights into pre-eclampsia. Hum Reprod Update 2002; 8: 501-508.
Chua S, Wilkins T, Sargent I, Redman C. Trophoblast deportation in pre-eclamptic pregnancy. Br J Obstet Gynaecol 1991; 98: 973-979.
Johansen M, Redman CW, Wilkins T, Sargent IL. Trophoblast deportation in human pregnancy-its relevance for pre-eclampsia. Placenta 1999; 20: 531-539.
Oudejans CB, Tjoa ML, Westerman BA, Mulders MA, Van Wijk IJ, Van Vugt JM. Circulating trophoblast in maternal blood. Prenat Diagn 2003; 23: 111-116.
Zhong XY, Holzgreve W, Hahn S. Cell-free fetal DNA in the maternal circulation does not stem from the transplacental passage of fetal erythroblasts. Mol Hum Reprod 2002; 8: 864-870.
Heimrath J, Krawczenko A, Dus D. PIH is associated with an increase of trophoblasts circulating in maternal blood. Ginekol Pol 2000; 71: 251-254.
Holzgreve W, Ghezzi F, Di Naro E, Ganshirt D, Maymon E, Hahn S. Disturbed feto-maternal cell traffic in preeclampsia. Obstet Gynecol 1998; 91: 669-672.
Jansen MW, Korver-Hakkennes K, van Leenen D, Visser W, in ‘t Veld PA, de Groot CJ, et al. Significantly higher number of fetal cells in the maternal circulation of women with preeclampsia. Prenat Diagn 2001; 21: 1022-1026.
Al-Mufti R, Hambley H, Albaiges G, Lees C, Nicolaides KH. Increased fetal erythroblasts in women who subsequently develop pre-eclampsia. Hum Reprod 2000; 15: 1624-1628.
Holzgreve W, Li JJ, Steinborn A, Kulz T, Sohn C, Hodel M, et al. Elevation in erythroblast count in maternal blood before the onset of preeclampsia. Am J Obstet Gynecol 2001; 184: 165-168.
Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, et al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 2006; 27: 56-61.