2004, Number 4
<< Back Next >>
Cir Cir 2004; 72 (4)
Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles
Arch-Tirado E, Collado-Corona MA, Morales-Martínez JJ
Language: Spanish
References: 36
Page: 309-315
PDF size: 135.97 Kb.
ABSTRACT
Methods: Animals: amphibians,
Frog catesbiana (frog bull, 30 animals);
reptiles,
Sceloporus torcuatus (common small lizard, 22 animals); birds:
Columba
livia (common dove, 20 animals), and mammals,
Cavia porcellus, (guinea pig, 20
animals). With regard to lodging, all animals were maintained at the Institute
of Human Communication Disorders, were fed with special food for each species, and
had water available ad
libitum. Regarding procedure, for carrying out analysis of
auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were
anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were
anesthetized by freezing (6°C).
Study subjects had needle electrodes placed in an imaginary line on the half
sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78).
Results: In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 Db, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale.
Conclusions: Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as
we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more evolved species.
REFERENCES
Sarnat HB, NetsKy MG. Sistema de la línea lateral, vestibular y acústica; percepción vibratoria táctil. En: Blume B, editor. Evolución del sistema nervioso. Madrid, España: 1976. pp. 129-162.
Arch-Tirado E. Comunicación animal. México: ICyT CONACYT 1991;13(175). pp. 7-10.
Arch-Tirado E, Ávila-del Olmo Y. Audición y comunicación (enfoque filogenético). México: Manuales de Medicina de Comunicación Humana; 1999. pp. 15.
Stebbins WC. The acoustic sense of animals. Cambridge, MA, USA: Harvard University Press; 1983. pp. 124-125.
Montes-de Oca FE, Arch-Tirado E, Poblano LA. Morfología de la trompa de Eustaquio en la rana. Bol Soc Mex Otol Otoneurocir 1994;2(2):41-42.
Brume H, Sarvat H, Nesty H. Evolución del sistema nervioso. España: Ciencia Estudio; 1996. pp. 86-88
Ball GF, Hulse SH. Birdsong. Am Psychol 1998;53:37-58.
Arch-Tirado E. Modelos biomédicos en el campo de la comunicación humana. México: Manuales de Medicina de Comunicación Humana; 2001. pp. 47.
González-Lima F, Finkenstadt T, Ewert JP. Learning-related activation in the auditory system of the rat produced by long-term habituation: a 2-deoxyglucose study. Brain Res 1989;498:67-79.
Snowdon CT. Affiliative processes and vocal development. Ann NY Acad Sci 1997;807:340-351.
Snowdon CT, Hausberger M. Social influences on vocal development. UK: Cambridge University Press; 1997.
Fay RR, Popper AN. Comparative hearing: mammals. New York: Springer-Verlag; 1994.
Knudsen EI. The role of auditory experience in the development and maintenance of sound localization. Trends Neurosci 1984;7:326-330.
Brudzynski SM, Chiu EM. Behavioral responses of laboratory rats to playback of 22 KHz ultrasonic calls. Physiol Behav 1995;57:1039-1044.
Wang X, Merzenich MM, Beitel R, Schreiner CE. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 1995;74:2685-2706.
Schmid H. Cómo se comunican los animales. Barcelona, España: Salvat; 1986. pp. 200.
Slater PJB. Comunicación. En: Introducción a la etología. México: Crítica; 1988. pp. 173-197.
Smith JW. Etología de la comunicación. México: Fondo de Cultura Económica; 1982. pp. 609.
Hernández-Orozco F, Flores T, Peñaloza Y. Registros electrofisiológicos para el diagnóstico de la patología de la comunicación humana. México: Instituto Nacional de la Comunicación Humana; 1997. pp. 231-242.
Holliday TA, Nelson HJ, Wiliqams DC, Willits N. Unilateral and bilateral brainstem auditory-evoked responses abnormalities in 900 Dalmatian dogs. J Vet Intern Med 1992;24:981-989.
Luttgen PJ. Deafness in the dog and cat. Vet Clin N Amer Small Animal Practice 1994;24:981-989.
Famula TR, Oberbauer AM, Sousa CA. A threshold model analysis of deafness in Dalmatians. Mamm Genome 1996;7:650-653.
Schortt A, Spoendlin H. Pigmented anomaly associated. Inner Ear Deafness 1987;103:451-457.
Strain GM, Kearney MT, Gingac IJ, Levesque DC, Nelson HJ, Tedford BC, Remsen LG. Brainstem auditory-evoked potential assessment of congenital deafness in Dalmatians: association with phenotypic markers. J Vet Intern Med 1992;6:175-182.
Capranica RR. Auditory system. In: Llinás R, Precht W, editors. Frog neurobiology. Berlin, Germany: Springer-Verlag; 1976. pp. 551-575.
Corwin JT, Bullock TH, Schweitzer J. The auditory brainstem response in five vertebrate classes. Electroencephalogr Clin Neurophysiol 1982;54:629-641.
Carey MB, Zelick R. The effect of sound level, temperature and dehydration on the brainstem auditory evoked potentials in anuran amphibians. Hear Res 1993;70:216-228.
Freeman DM. Anatomical model of the cochlea of the alligator lizard. Hear Res 1990;49:29-38.
Kaplan MS, Szaro BG, Weiss TF. Components of cochlear electric responses in alligator lizard. Hear Res 1983;12:323-351.
Nottebohm F, Álvarez-Buylla A, Cynx J, Kirn J, Ling CY, Nottebohm M, Suter R, Tolles A, William H. Song learning in birds: the relation between perception and production. Philos Trans R Soc Lond Biol Sci 1990;329:115-124.
Pepperberg IM, McLaughlin MA. Effect of avian-human joint attention on allospecific vocal learning by African grey parrots (Psittacus erithacus). J Comp Psychol 1996;110:286-297.
Boord RL. The anatomy of the avian auditory system. Ann NY Acad Sci 1969;167:186-198.
Diamond IT, Feldman M, Galambos R. Neuroanatomy of the auditory aystem. Arch Otolaryngol 1973;98:397-413.
Reiss D, McCowan B. Spontaneous vocal mimicry and production by bottlenose dolphins (tursiops truncates): evidence for vocal learning. J Comp Psychol 1993;107:301-312.
McCowan B, Reiss D. Whistle contour development in captive-born infant bottlenose dolphins: role of learning. J Comp Psych 1995; 109(3):242-260.
McCowan B, Reiss D. Vocal learning in captive bottlenose dolphins: a comparison to humans and non-human animals. In: Snowdon CT, Hausberger M, editors. Social influences on vocal development. Cambridge, UK: Cambridge University Press; 1997. pp. 178-207.