2010, Number 1
<< Back Next >>
Acta Cient Estud 2010; 8 (1)
Multiple Myeloma: Most important translocations and their implications in the prognosis of the disease
Menoni-Blanco BJ, Da Silva-De Abreu AJ
Language: Spanish
References: 49
Page: 15-22
PDF size: 268.50 Kb.
ABSTRACT
Genetic alterations in Multiple Myeloma (MM) have been deeply studied, being chromosomal translocations early relevant events in the pathogenesis of the diseases. Translocations appear since early stages of this sort of cancer. It has been proved the existence of primary non random events that destabilize the chromosome and develop other secondary alterations. Among such primary alterations those of heavy and light immunoglobulin chains stand out, which occur in the process of modification of the DNA in Lymphocytes B. At the same time, these translocations are related to the expression of multiple oncogenes such as CCDN1, CCDN3, FGFR3 and MAF family, whose expression lead to other genetic alterations, like the expression of MYC, which does not relate to the process of B cell differentiation. Translocations constitute a common event in almost all MM cell lines (about 90%). Oncogene overexpression; as consequences of these alterations, is related to an increased rate of cellular proliferation and inhibition of apoptosis. Some oncogenes; among them CCDN1, have a fundamental role in the progression of the disease that has not been completely clarified, meanwhile other better studied; like FGFR3 have a well known clinical-molecular relationship, being associated to a worse prognosis with a significant decrease of survival (21 vs 43 months). Knowledge of these genetic alterations is essential for the treatment and prognosis of patients with MM.
REFERENCES
Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001; 20(40): 5580–94
Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene 2001; 20(40): 5611-22.
Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64(4): 1546-58.
Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100 (4): 1417–24.
Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002; 99(6): 2185–2191.
Nishida, K., Tamura, A., Nakazawa, N., Ueda, Y., Abe, T., Matsuda, F. et al. The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood 1997; 90(2): 526–534.
Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001 19;412(6844): 341-6.
Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23(26): 6333-8.
Gabrea A, Leif Bergsagel P, Michael Kuehl W. Distinguishing primary and secondary translocations in multiple myeloma.DNA Repair (Amst) 2006; 5(9-10): 1225-33.
Kumar V, Cotran R, Robbins S. Neoplasias. En: Kumar V, Cotran R, Robbins S. Robbins Patología Humana. 7ª ed. Madrid: Elsevier; 2005. p. 165-210.
Kuehl M, Bergsagel P. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2(3): 177-89.
Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin D dysregulation: An early and unifying pathogenic event in multiple myeloma. Blood 2005; 106(1): 296-303.
Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood; 98(10): 3082-6.
Fonseca R, Hoyer JD, Aguayo P, Jalal SM, Ahmann GJ, Rajkumar SV et al. Clinical significance of the translocation (11;14)(q13;q32) in multiple myeloma. Leuk Lymphoma 1999; 35(5-6): 599-605.
Avet-Loiseau H, Li JY, Facon T, Brigaudeau C, Morineau N, Maloisel F, et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 1998; 58(24): 5640–5
Williams ME, Swerdlow SH, Rosenberg CL, Arnold A. Chromosome 11 translocation breakpoints at the PRAD1/cyclin D1 gene locus in centrocytic lymphoma. Leukemia 1993; 7(2): 241–5
Laï JL, Zandecki M, Mary JY, Bernardi F, Izydorczyk V, Flactif M et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 1995; 85(9): 2490-7.
Hoyer JD, Hanson CA, Fonseca R, Greipp PR, Dewald GW, Kurtin PJ. The (11;14)(q13;q32) translocation in multiple myeloma. A morphologic and immunohistochemical study. Am J Clin Pathol 2000; 113(6): 831-7.
Avet-Loiseau H, Facon T, Daviet A, Godon C, Rapp MJ, Harousseau JL et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Cancer Res 1999; 59: 4546-50.
Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995; 86(11): 4250-6.
Fonseca R, Harrington D, Oken M, Kyle R, Dewald G, Bailey R et al. Myeloma and the t(11;14)(q13;q32) represents a uniquely defined biological subset of patients. Blood 2002; 99: 3735–3741
Janssen JW, Vaandrager JW, Heuser T, Jauch A, Kluin PM, Geelen E et al. Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). Blood 2000; 95(8): 2691-8.
Malgeri U, Baldini L, Perfetti V, Fabris S, Vignarelli M C, Colombo G et al. Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by reverse transcription-polymerase chain reaction analysis of IGH-MMSET fusion transcripts. Cancer Res 2000; 60(15): 4058-61.
Perfetti V, Coluccia A, Intini D, Malgeri U, Colli-Vignarelli M, Casarini S et al. Translocation t(4;14)(p16.3;q32) is a recurrent genetic lesion in primary amyloidosis. Leukemia 2001; 158(5): 1599-603.
Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 199; 7 16(3): 260-4.
Fonseca R, Oken M, Greipp P. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathies of undetermined significance. Blood 2001; 98(4): 1271-2.
Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101(11): 4569–75.
Chesi M, Nardini E, Lim R, Smith K, Kuehl W, Bergsagel P. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92(9): 3025-34.
Richelda R, Ronchetti D, Baldini L, Cro L, Viggiano L, Marzella R et al. A novel chromosomal translocation t(4;14)(p16.3;q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood 1997; 90(10): 4062-70.
Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005; 106(8): 2837–40.
Chng W, Glebov O, Bergsagel P, Kuehl W. Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 2007; 20(4): 571-96.
Pratt G. Molecular aspects of multiple myeloma. J Clin Pathol: Mol Pathol 2002; 55(5): 273-83.
Moreau P, Facon T, Leleu X, Morineau N, Huyghe P, Harousseau JL et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002; 100 (5): 1579–83.
Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101(4): 1520–9.
Shaughnessy J Jr, Gabrea A, Qi Y, Brents L, Zhan F, Tian E et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98(1): 217-23.
Shaughnessy J Jr, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98(1): 217-23.
Sonoki T, Harder L, Horsman DE, Karran L, Taniguchi I, Willis TG et al. Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood 2001; 98(9): 2837-44.
Hinds PW, Dowdy SF, Eaton EN, Arnold A, Weinberg RA. Function of a human cyclin gene as an oncogene. Proc Natl Acad Sci USA 1994; 91(2):709-713.
Lahti JM, Li H, Kidd VJ. Elimination of cyclin D1 in vertebrate cells leads to an altered cell cycle phenotype, which is rescued by overexpression of murine cyclins D1, D2, or D3 but not by a mutant cyclin D1. J Biol Chem 1997; 272(16): 10859-10869
Sherr CJ. The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res 2000; 60(14): 3689- 3695.
Doglioni C, Chiarelli C, Macrí E, Dei Tos AP, Meggiolaro E, Dalla Palma P et al. Cyclin D3 expression in normal, reactive and neoplastic tissues. J Pathol1998;185(2): 159-66.
Sawyer JR, Lukacs JL, Munshi N, Desikan KR, Singhal S, Mehta J et al. Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping. Blood 1998; 92(11): 4269-4278, 1998
Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998 15; 91(12): 4457-63.
Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, et al. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 2001; 61(22): 8068-73.
Nishizawa M, Kataoka K, Goto N, Fujiwara KT, Kawai S. v-maf, a viral oncogene that encodes a "leucine zipper" motif. Proc Natl Acad Sci USA 1989; 86(20): 7711-5.
Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000; 97(1): 228-33.
Sawyer JR, Lukacs JL, Thomas EL, Swanson CM, Goosen LS, Sammartino G et al. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol 2001; 112(1): 167-74.48.
Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM. Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr 2008; (39): 25-31.
Attal M, Moreau P, Charbonnel C, Garban F, Hulin C et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood 2007; 109(8): 3489-95.