2011, Number 3
<< Back Next >>
Cir Cir 2011; 79 (3)
Latencies obtained of the somatosensory evoked potentials of the median and tibial nerve in rhesus monkey undergoing intrauterine laminectomy to simulate myelomeningocele
Hernández-Godínez B, Ibáñez-Contreras A, Durand-Rivera A, Galván-Montaño A, Reyes-Pantoja SA, Cárdenas-Lailson E
Language: Spanish
References: 21
Page: 257-262
PDF size: 284.33 Kb.
ABSTRACT
Background: Somatosensory evoked potentials (SSEP) have been described as excellent indicators of the degree of medullar injury in degenerative and metabolic diseases of the central nervous system (CNS). The prevalence of neural tube defects (NTD) is 6 cases/10,000 live newborns worldwide. It is thought that genetic as well as environmental factors contribute to the etiology of NTD. The objective of this study was to analyze and compare the latencies obtained by means of SSEP in a clinically healthy monkey vs. rhesus monkeys with intrauterine surgery in order to simulate surgically the neural tube defect (myelomengocele) by performing an intrauterine laminectomy and achieve correct the defect.
Methods: This study was performed using three non-human primates of the
Macaca mulatta species. There were practice intrauterine surgeries in two products to simulate the neurological defect produced by myelomeningocele, using the third monkey as control. For statistical methodology four monkeys were used. They were born by natural birth without any surgical manipulation. With the cesarean-obtained products, stimulation was performed of the tibial and median nerve.
Results: We observed that the hind limbs were the most affected, in particular, the left afferent of the monkey. The spinal cord was exposed to amniotic fluid, and there were no significant differences in the forelimbs.
Conclusions: The use of SSEP provides valuable information regarding preservation of sensorial functions in a variety of experimental neurological abnormalities.
REFERENCES
Steinbock P, Irving B, Cochrane DD, Irwin BJ. Long-term outcome and complications of children born with meningomyelocele. Childs Nerv Syst 1992;8:92-96.
Vieira AR, Castillo-Taucher S. Maternal age and neural tube defects: evidence for a greater effect in spina bifida than in anencephaly. Rev Med Chil 2005;133:62-70.
Abou-Jamra RC, Valente PR, Araújo A, Sanchez RC, Saldiva PH, Pedreira DA. Simplified correction of a meningomyelocele-like defect in the ovine fetus. Acta Cir Bras 2009;24:239-44.
Galván-Montaño A, Cárdenas-Laison E, Hernández-Godínez B, Ibáñez-Contreras A, Martínez-del Olmo A, Aragón-Inclán J. Desarrollo de un modelo animal de mielomeningocele y opciones de tratamiento prenatal en Macaca mulatta. Cir Cir 2007;75:357-362.
Abdolhamid A, Mehrdad M, Mahmood A, Mehdi F, Mohammad- Hasan S, Sarang S, et al. The effects of amniotic fluid on the histopathologic changes of exposed spinal cord in fetal sheep. Arch Iranian Med 2009;12:35-40.
Heffez DS, Aryanpur J, Hutchins GM, Freeman JM. The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 1990;26:987-992.
Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Timmel GB, Harrison MR, et al. In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg 1996;3:397-402.
Pedreira DA, Sanchez e Oliveira Rde C, Valente PR, Abou-Jamra RC, Araújo A, Saldiva PH. Validation of the ovine fetus as an experimental model for the human myelomeningocele defect. Acta Cir Bras 2007;22:168-173.
Yingling CD, Meuli-Simmen C, Meuli M, Timmel GB, Harrison M, Adzick NS. Experimental fetal neurosurgery: effects of in-utero manipulations on somatosensory evoked potentials. Pediatr Surg Int 1999;15:535-539.
Yingling CD, Meuli-Simmen C, Meuli M, Timmel GB, Adzick NS, Harrison M. Assessment of sensory function in neonatal sheep with somatosensory evoked potentials: methodology and normative data. Pediatr Surg Int 1999;15:530-534.
Grande C, Sancho MA, Conill J, Julia V, Albert A, Martínez E, et al. Creación de un modelo de mielomeningocele en el feto de conejo. España. Cir Pediatr 2002;15:101-106.
Ynsunza A. Potenciales somatosensoriales. En: Hernández-Orozco F, Flores-Rodríguez T, Peñaloza-López Y, eds. Registros electrofisiológicos para el diagnóstico de la patología de la comunicación humana. México: SSa-INCH; 1996. pp. 195-202.
Galván-Montaño A, Hernández-Godínez B, Ibáñez-Contreras A, Cárdenas-Laison E, Ramírez-Hernández R, Aragón-Inclán J. Anes thetic management in intrauterine surgery to evaluate an experimental model of myelomeningocele in non-human primates (Macaca mulatta). Acta Cir Bras 2010;25:294-297.
Booker JL, Erickson HH, Fitzpatrick EL. Cardiodynamics in the rhesus macaque during dissociative anesthesia. Am J Vet Res 1982;43:671-676.
Poblano A, Hernández-Godínez B, Arellano A, Arteaga C, Elías Y, Morales J, et al. Serum testosterone and electroencephalograpy spectra in developmental male rhesus Macaca mulatta monkeys. Arch Med Res 2004;35:406-410.
Edward N, Armitage, Berry G. Estadística para la investigación biomédica. España: Harcourt Brace; 1977. pp. 346-349.
Juliá V, Sancho MA, Albert A, Conill J, Martínez A, Grande C, et al. Prenatal covering of the spinal cord decreases neurologic sequelae in a myelomeningocele model. J Pediatr Surg 2006;4:1125-1129.
Boor R, Schwarz M, Goebel B, Voth D. Somatosensory evoked potentials in Arnold-Chiari malformation. Brain Dev 2004;26:99-104.
Scarff TB, Toleikis JR, Bunch WH, Parrish S. Dermatomal somatosensory evoked potentials in children with myelomeningocele. Z Kinderchir Grenzgeb 1979;28:384-387.
Reigel DH, Dallmann DE, Scarff TB, Woodford J. Intra-operative evoked potential studies of newborn infants with myelomeningocele. Dev Med Child Neurol Suppl 1976;37:42-49.
Michejda M. Intrauterine treatment of spina bifida: primate model. Z Kinderchir 1984;39:259-261.