2004, Number 2
<< Back Next >>
Cir Cir 2004; 72 (2)
Calcium, the atom generator of life and cellular function
Mansilla-Olivares A
Language: Spanish
References: 135
Page: 139-151
PDF size: 342.89 Kb.
ABSTRACT
Although during the last three decades phosphorylation and dephosphorylation systems have been pointed out as the mechanisms used by living cells to control biological processes, it seems that calcium dynamics is the phenomenon that precedes and controls protein activation by the introduction of phosphate groups into distinct protein structures. The process begins with activation of calcium channels that allows the influx of the ion, which once inside the cell leads to calcium-calmodulin complex, a molecule capable of triggering activation of distinct proteinkinases. Thus, the cell in addition to suffering a change in polarity enhances neuroconduction and release of different substances such as hormones and para-hormones, facilitates intra- and intercellular communication, and exerts determinant influence on phenotypic expression by means of promotion of immediate and mediate response genes.
Ionic conformational calcium runs short- and long-term facilitation mechanisms, exerting its influence on control of memory through homosynaptic depression and hetersynaptic facilitation processes; triggers autophosphorylation of several enzymes leading and enhancing cellular activity and participates in signal transduction and decodification. Calcium influx rate activates certain groups of phosphatases capable of inhibiting autophosphorylation processes, only as a negative feedback mechanism. In addition, ionic calcium also participates in the “cross-activate” mechanism of proteinkinases A and G, influencing to production of systemic and central nervous system nitric oxide.
On these bases, it is possible to guess that future pharmacologic interventions on calcium fluxes could be of invaluable importance in prevention and control of a number of distinct physiopathologic events.
REFERENCES
Hamill OP, Marty A, Neher E, Sakmann B, Siqworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane-patches. Pflugers Arch 1981;391:85-100.
Sakmann B, Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 1984;46:455-472.
Tanaka H, Shigenobu K. Effect of ryanodine on neonatal and adult rat heart: developmental increase in sarcoplasmic reticulum function. J Mol Cell Cardiol 1989;21:1305-1313.
Hui A, Ellinor PT, Krizanova O, Wang J-J, Diebold RJ, Schwartz A. Molecular cloning of multiple subtypes of a novel rat brain isoform of the a1 subunit of the voltage dependent calcium channel. Neuron 1991;7:35-44.
Koch WJ, Hui A, Shull GE, Ellinor P, Schwartz A. Characterization of cDNA clones encoding two putative isoforms of the a1 subunit of the dihydropyridine-sensitive voltage-dependent calcium channel isolated from rat brain and rat aorta. FEBS Lett 1989;250:386-388.
Koch WJ, Ellinor PT, Schwartz A. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. J Biol Chem 1990;265:17786-17791.
Ma YS, Kobrinsky E, Marks A. Cloning and expression of a novel truncated calcium channel form non-excitable cells. J Biol Chem 1995;270:483-493.
Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Tekeshima H, Narumya S, Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989;340:230-233.
Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem 1995;64:493-531.
Marks RA. Plasmamembrane calcium channels. In: Marks RA, Taubman BM, editors. Molecular biology of cardiovascular disease. New York: Marcel Dekker;1997.pp.237-249.
Snutch TP, Tomlinson WJ, Leonard JP, Gilbert MM. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 1991;7:45-57.
Feron O, Octave JN, Christen MO, Godfrain T. Quantification of two splicing events in the L-type calcium channel alpha-1 subunit of intestinal smooth muscle and other tissues. Eur J Biochem 1994;222:195-202.
Pérez-Reyes E, Schneider T. Molecular biology of calcium channels. Kidney Int 1995;48:1111-1124.
Soldatov NM. Genomic structure of human L-type Ca2+ channel. Genomics 1994;22:77-87.
Pérez-Reyes E, Wei XY, Castellano A, Brinbaumer L. Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. J Biol Chem 1990;265:20430-20436.
Bers DM, Pérez-Reyes E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 1999;42:339-360.
Campbell KP, Leung AT, Sharp AH. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 1988;11:425-430.
MacKinnon R. Pore loops: an emerging theme in ion channel structure. Neuron 1995;14:889-892.
Zuhlke R, Reuter H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic aminoacid sequences of the a1c subunit. Proc Natl Acad Sci USA 1998;95:3287-3294.
Klein M, Shapiro E, Kandel ER. Synaptic plasticity and the modulation of the Ca2+ current. J Exp Biol 1980;89:117-157.
Swandulla D, Hans M, Zipser K, Augustine GJ. Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signaling in nerve terminals. Neuron 1991;7:915-926.
Llinás R, Gruner JA, Sugimori M, McGuinness TL, Greengard P. Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of transmitter release in squid giant synapse. J Physiol (Lond) 1991;436:257-282.
Mansilla AO, Argüero RS, Rico FGM, Alba CC. Cellular receptors, acceptors and clinical implications. Arch Med Res 1993;24:127-137.
Almers W, Tse FW. Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? Neuron 1990;4:813-818.
Bähler M, Benfenati F, Valtorta F, Greengard P. The synapsins and the regulation of synaptic function. Bio Essays 1990;12:259-263.
Llinás R, McGuinness TL, Leonard CS, Sugimori M, Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 1985;82:3035-3039.
Südhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 1991;6:665-677.
Engel JE, Wu CF. Altered habituation of an identified escape circuit in Drosophila memory mutants. J Neurosci 1996;16:3486-3499.
Buonomano DV, Byrne JH. Long-term synaptic changes produced by a cellular analog of classical conditioning in Aplysia. Science 1990;249:420-423.
Edmonds B, Klein M, Dale N, Kandel ER. Contributions of two types of calcium channels to synaptic transmission and plasticity. Science 1990;250:1142-1147.
Byrne JH. Analysis of synaptic depression contributing to habituation of gill-withdrawal reflex in Aplysia californica. J Neurophysiol 1982;48:431-438.
Gingrich KJ, Byrne JH. Simulation of synaptic depression, posttetanic potentiation, and presynaptic facilitation of synaptic potentials from sensory neurons mediating gill-withdrawal reflex in Aplysia. J Neurophysiol 1985;53:652-669.
Mansilla OA, Barajas MH, Argüero S. Theoretical aspects of the neurobiological integration of memory. Med Hypotheses 2000;54(1):51-58.
Rankin CH, Broster BS. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav Neurosci 1992;106:239-249.
Abrams TW. Activity-dependent presynaptic facilitation: an associative mechanism in Aplysia. Cell Mol Neurobiol 1985;5:123-145.
Frost WN, Clark GA, Kandel ER. Parallel processing of short-term memory for sensitization in Aplysia. J Neurobiol 1988;19:297-334.
Hawkins RD, Castellucci VF, Kandel ER. Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. I. Identification and characterization. J Neurophysiol 1981;45:304-314.
Hawkins RD, Castellucci VF, Kandel ER. Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. II. Identified neurons produce heterosynaptic facilitation contributing to behavioral sensitization. J Neurophysiol 1981;45:315-326.
Hammer M, Cleary LJ, Byrne JH. Serotonin acts in the synaptic region of sensory neurons in Aplysia to enhance transmitter release. Neurosci Lett 1989;104:235-240.
Goh Y, Alkon DL. Sensory, interneuronal, and motor interactions within Hermissenda visual pathway. J Neurophysiol 1984;52:156-169.
Birnbaumer L, Abramowitz J, Brown AM. Receptor-effector coupling by G proteins. Biochim Biophys Acta 1990;1031:163-224.
Schütz W, Freissmuth M. Reverse intrinsic activity of antagonists on G protein-coupled receptors. Trends Pharmacol Sci 1992;13:376-380.
Ashkenazi A, Peralta EG, Winslow JW, Ramachandran J, Capon DJ. Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 1989;56:487-493.
Chou JC, Lee EH. Differential involvement of hippocampal G-protein subtypes in the memory process of rats. Neuroscience 1995;64:5-15.
Goldsmith BA, Abrams TW. cAMP modulates multiple K+ currents, increasing spike duration and excitability in Aplysia sensory neurons. Proc Natl Acad Sci USA 1992;89:11481-11485.
Klein M, Camardo J, Kandel ER. Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc Natl Acad Sci USA 1982;79:5713-5717.
Neary JT, Alkon DL. Protein phosphorylation/dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassicornis. J Biol Chem 1983;258:8979-8983.
Walsh JP, Byrne JH. Forskolin mimics and blocks a serotonin-sensitive decreased K+ conductance in tail sensory neurons of Aplysia. Neurosci Lett 1984;52:7-11.
Alkon DL. Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science 1984;226:1037-1045.
Hawkins RD, Abrams TW, Carew TJ, Kandel ER. A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. Science 1983;219:400-405.
Hochner B, Kandel ER. Modulation of a transient K+ current in the pleural sensory neurons of Aplysia by serotonin and cAMP: implications for spike broadening. Proc Natl Acad Sci USA 1992;89:11476-11480.
Braha O, Dale N, Hochner B, Klein M, Abrams TW, Kandel ER. Second messengers involved in the two processes of presynaptic facilitation that contribute to sensitization and dishabituation in Aplysia sensory neurons. Proc Natl Acad Sci USA 1990;87:2040-2044.
Shuster MJ, Camardo JS, Siegelbaum SA, Kandel ER. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. Nature 1985;313:392-395.
Baxter DA, Byrne JH. Serotonergic modulation of two potassium currents in the pleural sensory neurons of Aplysia. J Neurophysiol 1989;62:665-679.
Hochner B, Klein M, Schacher S, Kandel ER. Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization. Proc Natl Acad Sci USA 1986;83:8410-8414.
Pollock JD, Bernier L, Camardo JS. Serotonin and cyclic adenosine 3:5-monophosphate modulate the potassium current in tail sensory neurons in the pleural ganglion of Aplysia. J Neurosci 1985;5:1862-1871.
Smith CUM. Voltage-gated-channels. In: Smith CUM, editor. Elements of molecular neurobiology. UK: 1990.pp.229-248.
Baxter DA, Byrne JH. Differential effects of cAMP and serotonin on membrane current, action-potential duration, and excitability in somata of pleural sensory neurons of Aplysia. J Neurophysiol 1990;64:978-990.
Ghirardi M, Braha O, Hochner B, Montarolo PG, Kandel ER, Dale N. Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 1992;9:479-489.
Greenberg SM, Castellucci VF, Bayley H, Schwartz JH. A molecular mechanism for long-term sensitization in Aplysia. Nature 1987;329:62-65.
Wright WG, McCance EF, Carew TJ. Developmental emergence of long-term memory for sensitization in Aplysia. Neurobiol Learn Mem 1996;65:261-268.
Eppler CM, Bayley H, Greenberg SM, Schwartz JH. Structural studies on a family of cAMP-binding proteins in the nervous system of Aplysia. J Cell Biol 1986;102:320-331.
Palazzolo M, Katz F, Kennedy TE, Schwartz JH. Multiple cAMP-binding proteins in Aplysia tissues. J Neurobiol 1989;20:746-761.
Bergold PJ, Beushausen SA, Sacktor TC, Cheley S, Bayley H, Schwartz JH. A regulatory subunit of the cAMP-dependent protein kinase down-regulated in Aplysia sensory neurons during long-term sensitization. Neuron 1992;8:387-397.
Hegde AN, Goldberg AL, Schwartz JH. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci USA 1993;90:7436-7440.
Taylor SS, Buechler JA, Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990;59:971-1005.
Rechsteiner M. Natural substrates of the ubiquitin proteolytic pathway. Cell 1991;66:615-618.
Mercer AR, Emptage NJ, Carew TJ. Pharmacological dissociation of modulatory effects of serotonin in Aplysia sensory neurons. Science 1991;254:1811-1813.
Sugita S, Goldsmith JR, Baxter DA, Byrne JH. Involvement of protein kinase C in serotonin-induced spike broadening and synaptic facilitation in sensorimotor connections of Aplysia. J Neurophysiol 1992;68:643-651.
Soderling TR. Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem 1993;127/128:93-101.
Goda Y. Memory mechanisms. A common cascade for long-term memory. Curr Biol 1995;5:136-138.
Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 1993;260:222-226.
Greenspan RJ. Flies, genes, learning, and memory. Neuron 1995;15:747-750.
Weber W, Hilz H. cAMP-dependent protein kinases I and II: divergent turnover of subunits. Biochemistry 1986;25:5661-5667.
Klann E, Chen SJ, Sweatt JD. Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc Natl Acad Sci USA 1993;90:8337-8341.
Bailey CH, Bartsch D, Kandel ER. Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 1996;93:13445-13452.
Abel T, Martin KC, Bartsch D, Kandel ER. Memory suppressor genes: inhibitory constraints on the storage of long-term memory. Science 1998;279:338-341.
Dash PK, Hochner B, Kandel ER. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature (Lond) 1990;345:718-721.
Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM. Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci USA 1992;89:4820-4824.
Metz R, Ziff E. cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription. Genes Dev 1991;5:1754-1766.
Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci 1998;21:127-148.
Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen LH, Luca FC, Ruderman JV, Eytan E. Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J Biol Chem 1994;269:4940-4946.
Hegde AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain DG, Martin KC, Kandel ER, Schwartz JH. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 1997;89:115-126.
Bailey CH, Chen M. Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia. J Neurosci 1989;9:1774-1780.
Rose SPR. Cell-adhesion molecules, glucocorticoids and long-term-memory formation. Trends Neurosci 1995;18:502-506.
Doherty P, Cohen J, Walsh FS. Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 1990;5:209-219.
Hu Y, Barzilai A, Chen M, Bailey CH, Kandel ER. 5-HT and cAMP induce the formation of coated pits and vesicles and increase the expression of clathrin light chain in sensory neurons of Aplysia. Neuron 1993;10:921-929.
Bailey CH, Kandel ER. Structural changes underlying long-term memory storage in Aplysia: a molecular perspective. Semin Neurosci 1994;6:35-44.
Rose SPR. Glycoproteins and memory formation. Behav Brain Res 1995;66:73-78.
Saitoh T, Schwartz JH. Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J Cell Biol 1985;100:835-842.
Malinow R, Madison DV, Tsien RW. Persistent protein kinase activity underlying long-term potentiation. Nature 1988;335:820-824.
Pasinelli P, Ramakers GMJ, Urban IJA, Hens JJH, Oestreicher AB, de Graan PNE, Gispen WH. Long-term potentiation and synaptic protein phosphorylation. Behav Brain Res 1995;66:53-59.
Riedel G, Wetzel W, Reymann KG. Comparing the role of metabotropic glutamate receptors in long-term potentiation and in learning and memory. Prog Neuropsychopharmacol Biol Psychiatr 1996;20: 761-788.
Tiunova A, Anokhin K, Rose SP, Mileusnic R. Involvement of glutamate receptors, protein kinases, and protein synthesis in memory for visual discrimination in the young chick. Neurobiol Learn Mem 1996;65:233-243.
Richter-Levin G, Canevari L, Bliss TVP. Long-term potentiation and glutamate release in the dentate gyrus: links to spatial learning. Behav Brain Res 1995;66:37-40.
Lei S, Jackson FM, Jia Z, Roder J, Bai D, Orser AB, MacDonald FJ. Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG. Nat Neurosci 2000;3:559-565.
Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, Henley JM, Jane DE, Watkins JC, Collingridge GL. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 1993;363:347-350.
Miller SG, Kennedy MB. Regulation of brain type II Ca++/calmodulin dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 1986;44:861-870.
Lisman J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 1994;17:406-412.
Miller SG, Patton BL, and Kennedy MB. Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1988;1:593-604.
Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU. Sublette E. Persistent activation of the z isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci USA 1993;90:8342-8346.
Fagnou DD, Tuchek JM. The biochemistry of learning and memory. Mol Cell Biochem 1995;149-150:279-286.
Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31-39.
Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 2002;364: 593-611.
Hanson PI, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 1992;61:559-601.
Rickard NS, Ng KT. Blockade of metabotropic glutamate receptors prevents long-term memory consolidation. Brain Res Bull 1995;36:355-359.
Riedel, G. If phosphotases go up, memory goes down. Cell Mol Life Sci 1999;55:549-553.
Bortolotto ZA, Bashir ZI, Davies CH, Collingridge GL. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 1994;368:740-743.
Thompson RF. The neural basis of basic associative learning of discrete behavioral responses. Trends Neurosci 1988;11:152-155.
Malenka RC. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 1991; 6:53-60.
Huang YY, Colino A, Selig DK, Malenka RC. The influence of prior synaptic activity on the induction of long-term potentiation. Science 1992;255:730-733.
Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron 1992;8:3-11.
Clark KA, Randall AD, Bortolotto ZA, Bashir ZI, Collingridge GL. Mechanisms involved in hippocampal LTP: implications for retrograde messengers. Semin Neurosci 1993;5:189-195.
Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-135.
Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988;27:8706-8711.
Marletta MA. Nitric oxide: biosynthesis and biological significance. Trends Biol Sci 1989;14:488-492.
Carew TJ. Molecular enhancement of memory formation. Neuron 1996;16:5-8.
Arancio O, Kandel ER, Hawkins RD. Activity-dependent long-term enhancement of transmitter release by presynaptic 3,5-cyclic GMP in cultured hippocampal neurons. Nature 1995;376:74-80.
Jiang H, Shabb JB, Corbin JD. Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues. Biochem Cell Biol 1992;70:1283-1289.
Wang X, Robinson PJ. Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 1997;68:443-456.
Hofmann F, Dostmann W, Keilbach A, Landgraf W, Ruth P. Structure and physiological role of cGMP-dependent protein kinase. Biochim Biophys Acta Mol Cell Res 1992;1135:51-60.
Butt E, Geiger J, Jarchau T, Lohmann SM, Walter U. The cGMP-dependent protein kinase-gene, protein, and function. Neurochem Res 1993;18:27-42.
Francis SH, Corbin JD. Progress in understanding the mechanism and function of cyclic GMP-dependent protein kinase. Adv Pharmacol 1994;26:115-170.
Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted-amyloid-precursor protein. Nature 1996;379:74-78.
Pineda J, Kogan JH, Aghajanian GK. Nitric oxide and carbon monoxide activate locus coeruleus neurons through a cGMP-dependent protein kinase: involvement of a nonselective cationic channel. J Neurosci 1996;16:1389.
Meriney SD, Gray DB, Pilar GR. Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase. Nature 1994;369:336-339.
Méry PF, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991;88:1197-1201.
Ruth P, Wang GX, Boekhoff I, May B, Pfeifer A, Penner R, Korth M, Breer H, Hofmann F. Transfected cGMP-dependent protein kinase suppresses calcium transients by inhibition of inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci USA 1993;90:2623-2627.
Landgraf W, Hullin R, Göbel C, Hofmann F. Phosphorylation of cGMP-dependent protein kinase increases the affinity for cyclic AMP. Eur J Biochem 1986;154:113-117.
Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD. The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 1995;270:27380-27388.
Beltman J, Sonnenburg WK, Beavo JA. The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cell Biochem 1993;127:239-253.
Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci USA 1993;90:9808-9812.
Bredt DS, Ferris CD, Snyder SH. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem 1992;267:10976-10981.
Dinerman JL, Steiner JP, Dawson TM, Dawson V, Snyder SH. Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. Neuropharmacology 1994;33:1245-1251.
Krebs EG, Beavo JA. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 1979;48:923.