2007, Number 1
<< Back Next >>
Enf Infec Microbiol 2007; 27 (1)
Biofilm: Latent Threat or Protective Factor? State of Art
Diemond HJBB, Miranda NG
Language: Spanish
References: 34
Page: 22-28
PDF size: 129.14 Kb.
ABSTRACT
The study of the pathogenesis of
Staphylococcus, includes biofilm as a virulence factor. It has received great interest in recent years, mainly related to the high frequency of infections associated to plastic devices, the high costs of the infections, and the elevated risk of complications in these patients, in part attributed to a bad therapeutic response in the presence of biofilm
The molecular structure of biofilm has been described, along with the pathway of production, the responsible genes involved in its expression and the mechanisms of regulation. Some studies include induction by chemicals and
in vitro interactions with the mechanisms of defense of the host and antimicrobials. Despite the number of publications; the clinical relevance and the prognostic implications regarding the response to treatment and its role in the adherence to the plastic device remains to be defined.
We performed a review of the literature, analyze the results of published studies and compared them with our assays with
Staphylococcus spp. isolated from pediatric patients.
REFERENCES
Mandell G, Bennett J, Dolin R. Staphylococcus, in Principles and practice of infectous diseases, 5ª ed., Panamericana, EUA, 2000, p. 2096.
Koneman E, Allen S, Dowell V, Janda W, et al. Staphylococcus en Diagnóstico microbiológico, 4ª ed., Panamericana, Argentina, 2000, p. 355.
Lowy F. Staphylococcus aureus infections. New Engl J Med 1998; 339: 520-532.
Pascual A. Pathogenesis of catheter-related infections: lessons for new designs. Clin Microbiol Infect 2002; 8: 256-264.
Peters G, Locci R, Pulverer G. Microbial colonization of prosthetic devices. Scanning electron microscopy of naturally infectedintravenous catheters. Zentralbl Bakteriol Mikrobiol 1981; 173: 293-299.
O´Toole G, Kaplan H, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54: 50-68.
Elliott, T. Can antimicrobial central venous catheters prevent associated infection? Br J Haematol 1999; 107: 235-241.
Gotz F. Staphylococcus and biofilms. Mol Microbiol 2002; 43: 1367-1378.
Rupp M, Fey P, Heilmann C, Gotz F, Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 2001; 183: 1038-1042.
Finkelstein E, Jekel J, Troidle L, Gorban-Brennan N, Finkelstein F, et al. Patterns of infection in patients maintained on long-term peritoneal dialysis therapy with multiple episodes of peritonitis. Am J Kidney Dis 2002; 39: 377-385.
O’Gara J, Humphreys H. Staphylococcus epidermidis biofilms: importance and implications. Journal of Medical Microbiology 2001; 50: 582-587.
Bayston R, Penny SR. Excessive production of mucoid substance in Staphylococcus SIIA: a possible factor in colonization of Holter shunts. Dev Med Child Neurol 1972; 14: 25-28.
von Eiff C, Heilmann C, Peters G. New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur J Clin Microbiol Infect Dis 1999; 18: 843-846.
Gerke C, Kraft A, Süßmuth R, Schweitzer O, Götz F. Characterization of the N-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidis Polysaccharide Intercellular Adhesin. J Biol Chem 1998; 273: 18586-18593.
Ishak MA, Gröschel DHM, Mandel GL, Wensel RP. Association of slime with pathogenicity of CNS causing nosocomial septicemia. J Clin Microbiol 1985; 22: 1025-1029.
Christensen GD, Parisi JT, Bisno AL, Simpson WA. Characterization of clinically significant strains of CNS. J Clin Microbiol 1983; 18: 258-269.
Baldassarri L, Donnelli G, Gelosia A, et al. Purification and characterization of the staphylococcal slime – associated antigen and its occurrence among Staphylococcus epidermidis clinical isolates. Infect Immun 1996; 64: 3410-3415.
Mack D, Fischer W, Krokotch A, Leopold K, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1-6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 1996; 178: 175-183.
Freeman J, Falkiner F, Keane C. New method for detecting slime production by coagulase-negative staphylococci. J Clin Pathol 1989; 42: 872-874.
Christensen G, Simson J, Younger L, Baddour F, Barrett D, Melton D, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22: 996-1006.
21.Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J. Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and I vivo foreign body infections. J Infect Dis 2003; 188: 730-737.
22.de Silva G, Kantzanou M, Justice A, Massey R, Wilkinson A, Day N, Peacock S. The ica Operon and Biofilm Production in Coagulase- Negative Staphylococci Associated with Carriage and Disease in a Neonatal Intensive Care Unit. J Clin Microb 2002; 40: 2382-2388.
Lyte M, Freestone P, Neal C, Olson B, Haigh R, Bayston R, Williams P. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 2003; 361(9352): 130-135.
Cramton S, Ulrich M, Götz F, Döring G. Anaerobic Conditions Induce Expression of Polysaccharide Intercellular Adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 2001; 69: 4079-4085.
Curtin J, Cormican M, Fleming G, Keelehan J, Colleran E. Linezolid compared with eperezolid, vancomycin, and gentamicin in an in vitro model of antimicrobial lock therapy for Staphylococcus epidermidis central venous catheter-related biofilm infections. Antimicrob Agents Chemother. 2003; 47(10): 3145-3148.
Wilcox M, Kite P, Mills K, Sugden S. In situ measurement of Linezolid and Vancomycin concentrations in intravascular catheterassociated biofilm. 2001; 47: 171-175.
Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, et al. In Vitro and Ex Vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother. 2003; 47(11): 3580-3585.
Christensen GD, Bisno AL, Simpson WA. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37: 318-325.
Ziebuhr W, Krimmer V, Rachid S, Loner I, Gotz F, Hacker J. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Molecular Microbiology 1999; 32: 345-356.
Dietrich M, Holger Re, Dobinsky S, Riedewald J, Nedelmann M, Knobloch J, et al. Identification of Three Essential Regulatory Gene Loci Governing Expression of Staphylococcus epidermidis Polysaccharide Intercellular Adhesin and Biofilm Formation. Infect Immun 2000; 68: 3799-3807.
Lappin-Scott H, Bass C. Biofilm formation: Attachment, growth, and detachment of microbes from surfaces. Am J Infec Control 2001; 29: 250-251.
Ziebuhr W, Heilmann F, Gotz P, Meyer K, et al. Detection of the intercellular adhesion gene cluster (Ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 1997; 65: 890-896.
Zheng Z, Stewart P. Penetration of Rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 2002; 46(2): 900-903.
Diemond J, Miranda G, Solórzano F, Leaños B. Detección de los genes del operón de Ica y producción de polisacárido de adherencia intercelular (PIA) en cepas de Staphylococcus spp. aisladas de pacientes con infecciones asociadas a catéteres. Tesis de Infectología Pediatría 2003. HP CMN SXXI IMSS.