2010, Number 4
<< Back Next >>
Rev Mex Anest 2010; 33 (4)
Postconditioning to protect the human heart
Luna-Ortiz P, Pastelin G, Torres JC, Martínez-Rosas M
Language: English
References: 100
Page: 187-199
PDF size: 676.11 Kb.
ABSTRACT
Recently, it has been shown that the heart can be protected against the ischemia reperfusion injury if brief coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited by pharmacological interventions, which are named pharmacological PostC. In general, PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion, decrease infarct size, diminishes apoptosis, neutrophil activation and endothelial dysfunction. The mechanisms that participate in PostC still are not completely understood. In this regard, adenosine, glycine, bradykinin, ciclosporin A, are involved in post C triggering. Similar to preconditioning, PostC triggers several signaling pathways and molecular components including nitric oxide (NO), Protein Kinase C (PKC), adenosine triphosphate-sensitive potassium channels (IKATP), the pathway: Reperfusion Injury Salvage Kinases (RISK) which compresses to: phosphatidylinositol-3-OH kinase (PI3K) and Extracellular signal-Regulated Kinase (ERK 1/2), and finally, the Survivor Activating Factor Enhancement (SAFE) pathway. In this review we describe the mechanisms of reperfusion-induced injury as well as the proposed protective pathways activated by PostC, which appear to converge in inhibition of mitochondrial permeability transition pores (mPTP) opening. On the other hand, experimental evidence indicated that volatile anesthetics and opioids are capable of exerting cardioprotective effects under certain conditions, constituting a very useful pharmacological Post C. In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering the aforementioned mediators, which acting in concert lead to protection against reperfusion injury (PostC). Pharmacological, especially anesthetic, PostC may have a promising future in the clinical scenarios.
REFERENCES
Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Commitee and Stroke Statistics Subcommittee. Circulation 2009;119:e182.
Gibbons RJ, Valeti US, Araoz PA, Jaffe AS. The quantification of the infarct size. J Am Coll Cardiol 2004;44:1533-1542.
McGovern PG, Pankow JS, Shahar E, Doliszny KM, Folsom AR, Blackburn H, and Luepker RV. Recent trends in acute coronary heart disease-mortality, morbidity, medical care and risk factors. The Minnesota Heart Survey Investigators. N Engl J Med 1996;334:884-890.
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357:1121-1135.
Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960;70:68-78.
Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765-772.
Das AM, Harris DA. Regulation of the mitochondrial ATP synthase in intact rat cardiomyocytes. Biochem J 1990;266:355-361.
Dennis S C, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go? J Mol Cell Cardiol 1991;23:1077-1086.
Schlüter KD, Jakob G, Ruiz-Meana M, Garcia-Dorado D, Piper HM. Protection of reoxygenated cardiomyocytes against osmotic fragility by NO donors. Am J Physiol 1996;271:H428–H434.
Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 2004;61:365-371.
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233-249.
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion –a target for cardioprotection. Cardiovasc Res 2004;61:372-385.
Di Lisa et al. 2001 = Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 2001;276:2571-2575.
Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995;307: 93-98.
Cohen MV, Yang XM, Downey JM. Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning´s success. Basic Res Cardiol 2008;103:464-471.
Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999;43:860-878.
Engler RL, Schmid-Schnbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983;111:98-111.
Moore KL, Patel KD, Bruel RE. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995;128:661-671.
Zhao ZQ, Corvera JS, Halkos ME. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003;285:H579.
Kin H, Zatta AJ, Lofye MT. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 2005;67:124.
Halkos ME, Kerendi F, Corvera JS. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg 2004;78:961.
Sun HY, Wang NP, Halkos M. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen activated protein kinase signaling pathways. Apoptosis 2006;11:1583.
Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 2004;44:1103-1110.
Yang X-M, Philipp S, Downey JM, Cohen MV. Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3Kinase and guanylyl cyclase activation. Basic Res Cardiol 2005;100:57-63.
Tsang A, Hausentoy DJ, Mocanu MM, Yellon DM. Postconditioning a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-akt pathway. Circ Res 2004;95:230-232.
Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signaling. Cardiovasc Res 2006;70:315-324.
Jang Y, Xi J, Wang H, Mueller RA, Norfieet EA, Xu Z. Postconditioning prevents reperfusion injury by activating δ-opioid receptors. Anaesthesiology 2006;108:243-250.
Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 1993;25:1461-1469.
Argaud I, Gateau-Roesch O, Risky O, Loufooat J, Robert D, Ovize M. Postconditioning inhibits mitocondrial permeability transition. Circulation 2005;111:194-197.
Philipp S, Downey JM, Cohen MV. Postconditioning must be initiated in less than 1 minute following reperfusion and is dependent on adenosine receptors and PI3-kinase. (Abstract) Circulation 2004;110:suppl 111:804.
Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 2003;60:617-625.
Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 2002;55:534-543.
Jonassen AK, Sack MN, Mjos OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001;89:1191-1198.
Sun K, Liu ZS, Sun Q. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol 2004;10:1934-1938.
Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation 2005;111:194-197.
Argaud L, Gomez L, Gateau-Roesch O, Couture-Lepetit E, Loufouat J, Robert D, Ovize M. Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol 2005;39:893-899.
Baines CP, Kaise RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005;434:658-662.
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsukimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but no apoptotic cell death. Nature 2005;434:652-658.
Lim SY, Davidson SM, Hausenly DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res 2007;75:530-535.
Hausenby DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 2004;61:448-460.
Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3 beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004;113:1535-1549.
Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ. Nitric oxide protects rat hepatodytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology 2004;39:1533-1543.
Jonassen AK, Mjos OD, Sack MN. p70s6 kinase is a functional target of insulin activated Akt cell-survival signaling. Biochem Biophys Res Commun 2004;315:160-165.
Jonassen AK, Sack MN, Mjos OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001;89:1191-1198.
Davidson SM, Hausenloy D, Duchen MR, Yellon DM. Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. The International Journal of Biochemistry & Cell Biology 2006;38:414-419.
Doenst T, Bothe W, Beyersdorf F. Therapy with insulin in cardiac surgery: Controversies and possible solutions. Ann Thorac Surg 2003;75:S721-S728.
Sack MN, Yellon DM. Insulin therapy as an adjunct to reperfusion after acute coronary ischemia: A proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol 2003;41:1404-1407.
Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv 2005;65:361-367.
Staat P, Rioufol G, Piot C, Cottin Y, Cung TT. Postconditioning the human heart. Circulation 2005;112:2143-2148.
Bell RM, Yellon DM. Atorvastatin, administered at the onset of reperfusion and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. J Am Coll Cardiol 2003;41:508-515.
Bell RM, Yellon DM. Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3k, Akt and eNOS. J Mol Cell Cardiol 2003;35:185-193.
Baxter GF, Mocanu MM, Brar BK, Latchman DS, Yellon DM. Cardioprotective effects of transforming growth factor-beta 1 during early reoxygenation of reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol 2001;38:930-939.
Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shan A, Elani D, Shannon RP. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004;109: 962-965.
Shlack W, Preckel B, Barthel H. Halothane reduces reperfusion injury after regional ischaemia in the rabbit heart in vivo. Br J Anaesth 1997;79:88-96.
Preckel B, Schlack W, Comfere T. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth 1998;81:905-912.
Schlack W, Preckel B, Stunneck D. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth 1998;81:913-919.
Varadarajan SG, An J, Novalija E. Sevoflurane before or after ischemia improves contractile and metabolic function while reducing myoplasmic Ca2 loading in intact hearts. Anesthesiology 2002;96:125-133.
HeindI B, Reichle FM, Zahler S. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology 1999;91:521-530.
Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 2004;61:481-497.
Jang Y, Xi J, Wang H, Mueller RA, Norfieet EA, Xu Z. Postconditioning prevents reperfusion injury by activating d-opioid receptors. Anaesthesiology 2006;108:243-250.
Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase b inhibition during reperfusion in intact rat hearts. Circ Res 2004;94:960-966.
Weihrauch D, Riotikowski JG, Bienengracher M, Hersten JR, Warltier DC, Pagel PS. Morphine enhances isoflurane-induced postconditioning against myocardial infarction: The role of phosphatidylinositol-3-kinase and opioid receptors in rabbits. Anesth Analg 2005;101:942-949.
Gross ER, Hsu AK, Gross GJ. GSK3b inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol 2007;102:341-349.
Siegmund B, Schlack W, Ladilov YV. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 1997;96:4372-4379.
Shlack W, Preckel B, Barthel H. Halothane reduces reperfusion injury after regional ischaemia in the rabbit heart in vivo. Br J Anaesth 1997;79:88-96.
Preckel B, Schlack W, Comfere T. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth 1998;81:905-912.
Schlack W, Preckel B, Stunneck D. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth 1998;81:913-919.
Varadarajan SG, An J, Novalija E. Sevoflurane before or after ischemia improves contractile and metabolic function while reducing myoplasmic Ca2 loading in intact hearts. Anesthesiology 2002;96:125-133.
HeindI B, Reichle FM, Zahler S. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology 1999;91:521-530.
Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 2004;61:481-497.
Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao ZQ, Guyton RA, Headrick JP, Vinten-Johansen J. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 2005;67:124-133.
Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circ Res 2004;94:960-966.
Weihrauch D, Riotikowski JG, Bienengracher M, Hersten JR, Warltier DC, Pagel PS. Morphine enhances isoflurane-induced postconditioning against myocardial infarction: The role of phosphatidylinositol-3-kinase and opioid receptors in rabbits. Anesth Analg 2005;101:942-949.
Fryer RM, Wang Y, Hsu AK. Essential activation of PKC-delta in opioid-initiated cardioprotection. Am J Physiol Heart Circ Physiol 2001;280:H1346-H1353.
Ludwig LM, Patel HH, Gross GJ. Morphine enhances pharmacological preconditioning by isoflurane: Role of mitochondrial K (ATP) channels and opioid receptors. Anesthesiology 2003;98:705-711.
Luna-Ortiz P, Zarco-Olvera, G, Ramírez-Ortega M, Tenorio-López FA, Gutierrez A, Martínez-Rosas M, Del-Valle-Mondragón L, Pastelin G. Antiarrhythmic and cardioprotective of remifentanil in anesthetized dogs. Arch Cardiol Mex 2009;79:182-188.
Nishimura Y, Lemasters JJ. Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ 2001;8:850-858.
Rajendra S, Lynch JW, Schofield PR. The glycine receptor. Pharmacol Ther 1997;73:121-146.
Laube B, Maksay G, Schemm R, Betz H. Modulation of glycine receptor function: a novel therapeutic approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 2002;23:519-527.
Pfeiffer F, Betz H. Solubilization of the glycine receptor from rat spinal cord. Brain Res 1981;226:273-279.
Werman R, Davidoff RA, Aprison MH. Is glycine a neurotransmitter? Nature 1967;214:681-683.
Yamashima S, Konno A, Wheeler MD, Rusyn IV, Rusyn EL, Cox AD, Thurman RG. Endothelial cells contain a glycine-gated chloride channel. Nutr Cancer 2001;40:197-204.
Reeves WB. Effects of chloride channel blockers on hypoxic injury in rat proximal tubules. Kidney Int 1997;51:1529-1534.
Ikejima K, Limuro Y, Forman DT, Thurman RG. A diet containing glycine improves survival in endotoxic shock in the rat. Am J Physiol 1996;271:G-97-103.
Koerner JE, Anderson BA, Dage RC. Protection against postischemic myocardial dysfunction in anesthetized rabbits with scavengers of oxygen-derived free radicals. J Cardiovasc Pharmacol 1991;17:185-191.
Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. N-2mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol 1986;8:1161-1168.
Tanaka M, Fujiwara H, Yamasaki K, Sasayama S. Superoxide dismutase and N-2 mercaptopropionylglycine attenuate infact size limitation effect of ischemic preconditioning in the rabbit. Cardiovasc Res 1994;28:980-986.
Ruiz-Meana M, Pina P, Garcia Dorado D, Rodriguez-Sinovas A. Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. J Physiol 2004;558:873-882.
Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 2005;67:124-133.
Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning protection is not dependent on circulating blood factors. Basic Res Cardiol 2005;100:57-63.
Kerendi F, Kin H, Halkos ME, et al. Remote postconditioning: brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Bas Res Cardiol 2005;100:404-412.
Jin ZX, Zhou JJ, Xing M. Postconditioning the human heart with adenosine in heart valve replacement surgery. Ann thorac Surg 2007;83:2066-2073.
Lecour S. Multiple protective pathways against reperfusion injury: a SAFE path without Aktion? J Mol Cell Cardiol 2009:46:607-609.
Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 2003;65:81-101.
Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995;92:1487-1493.
Kurreimeyer KM, Michael LH, Baumgarten G, Taffet GE. Peschon JJ, Sivasubramanian N, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 2000;97:5456-5461.
Flaherty MP, Guo Y, Tiwari S, Rezazadeh A, Hunt G, Sangaaimath SK, et al. The role of TNF-alpha receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol 2008;45:735-741.
Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, et al. Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 2005;112:3911-3918.
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 2008;120:172-185.
Gross ER, Hsu AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 2006;291:H827-834.