2009, Number 4
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2009; 22 (4)
Matrix metalloproteinases participation in cancer progression
González-Ávila G, González A, Delgado J, Gutiérrez-González LH
Language: Spanish
References: 53
Page: 328-336
PDF size: 91.73 Kb.
ABSTRACT
Matrix metalloproteinases (MMPs) have a complex role in cancer progression. These enzymes not just degrade extracellular matrix but are also involved in the regulation of the neoplastic cell microenvironment and in events such as cellular proliferation and differentiation, apoptosis, cellular migration, angiogenesis and immune response evasion. In addition, it has been demonstrated that MMPs have a dual role in metastasis development, since they have antitumoral and antimetastatic effects. The cellular origin of MMPs determines their effects, either pro-metastatic or protector, and their expression by different cell types is associated with a specific stage of cancer progression. Further knowledge on how MMPs participate in a certain step during metastasis onset would allow the development of new early diagnostic markers, as well as the implementation of more specific antimetastasis therapies.
REFERENCES
World Health Organization. Cancer. Fact sheet N° 297, February 2009. Accesible en: http://www.who. int/mediacentre/factsheets/
Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-572.
Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000;18:1135-1149.
Cox G, O’Byrne KJ. Matrix metalloproteinases and cancer. Anticancer Res 2001;21:4207-4219.
McCawley LJ, Matrisian LM. Matrix metalloproteinases: they´re not just for matrix anymore! Curr Opin Cell Biol 2001;13:534-540.
Martin MD, Matrisian LM. The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 2007;26:717-724.
Woessner JF Jr. MMPs and TIMPs-an historical perspective. Mol Biotechnol 2002;22:33-49.
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827-839.
Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med 2008;29:290-308.
Somerville RP, Oblander SA, Apte SS. Matrix metalloproteinases: old dogs with new tricks. Genome Biol 2003;4:216. http://genomebiology.com/2003/4/6/216
Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 2003;253:269-285.
Baker AH, Edwards DR, Murphy G. Metalloproteinases inhibitors: biological actions and therapeutic opportunities. J Cell Sci 2002;115(Pt 19):3719-3727.
Yu WH, Yu S, Meng Q, Brew K, Woessner JF Jr. TIMP-3 binds to sulphated glycosaminoglycans of the extracellular matrix. J Biol Chem 2000;275:31226-31232.
Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999;103:1237-1241.
Woessner JF, Nagase H. Activation of the zymogen forms of MMPs. In: Woessner JF, Nagase H, editors. Matrix metalloproteinase and TIMPs. New York, NY: Oxford University Press; 2000.p.72-76.
Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008;1:re6.
Noël A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 2008;19:52-60.
Sato H, Takino T, Okada Y, et ál. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 1994;370:61-65.
Brooks PC, Strömblad S, Sanders LC, et ál. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996;85:683-693.
Bourguignon LY, Gunja-Smith Z, Iida N, et ál. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 1998;176:206-215.
Wang XQ, Sun P, Paller AS. Ganglioside GM3 inhibits matrix metalloproteinase-9 activation and disrupts its association with integrin. J Bio Chem 2003;278: 25591-25599.
Yu WH, Woessner JF Jr, McNeish JD, Stamenkovic I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling Genes Dev 2002;16:307-323.
Nakahara H, Howard L, Thompson EW, et ál. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA 1997;94: 7959-7964.
Chen WT, Wang JY. Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann N Y Acad Sci 1999;878:361-371.
Mori H, Tomari T, Koshikawa N, et ál. CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J 2002;21:3949-3959.
Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 2003;114:33-45.
López-Otín C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007;7:800-808.
Jodele S, Blavier L, Yoon JM, DeClerck YA. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 2006;25:35-43.
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23:1011-1027.
Bergers G, Brekken R, McMahon G, et ál. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2:737-744.
Chantrain CF, Shimada H, Jodele S, et ál. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 2004;64:1675-1686.
Hamano Y, Zeisberg M, Sugimoto H, et ál. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3:589-601.
Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997; 88:801-810.
Kerkelä E, Ala-aho R, Klemi P, et ál. Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. J Pathol 2002;198;258-269.
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25:9-34.
Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol 2007;213:355-364.
Wyckoff JB, Jones JG, Condeelis JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 2000;60:2504-2511.
Amoh Y, Li L, Yang M, et ál. Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by Doxorubicin. Cancer Res 2005;65:2337-2343.
Hrabec E, Strek M, Nowak D, Hrabec Z. Elevated level of circulating matrix metalloproteinase-9 in patients with lung cancer. Respir Med 2001;95:1-4.
Nyberg P, Heikkilä P, Sorsa T, et ál. Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease 2, -9, and -13. J Biol Chem 2003;278:22404-22411.
Ossowski L. Invasion of connective tissue by human carcinoma cell lines: requirement for urokinase, urokinase receptor, and interstitial collagenase. Cancer Res 1992;52:6754-6760.
Sheu BC, Hsu SM, Ho HN, Lien HC, Huang SC, Lin RH. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 2001;61:237-242.
Kataoka H, Uchino H, Iwamura T, Seiki M, Nabeshima K, Koono M. Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal fragment of alpha1-proteinase inhibitor generated by matrix metalloproteinases: a possible modulatory role in natural killer cytotoxicity. Am J Pathol 1999;154:457-468.
Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12:895-904.
Weis S, Cui J, Barnes L, Cheresh D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 2004;167:223-229.
Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinase regulates bioavailability and vascular patterning in tumors. J Cell Bioll 2005;169:681-691.
Koop S, MacDonald IC, Luzzi K, et ál. Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 1995;55:2520-2523.
Kaplan RN, Rafii S, Lyden D. Preparing the "soil": the premetastatic niche. Cancer Res 2006;66:11089-11093.
Luzzi KJ, MacDonald IC, Schmidt EE, et ál. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 1998;153:865-873.
Holmgren L, O’Reilly M, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995;1:149-153.
Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000;18:1135-1149.
Cox G, O’Byrne KJ. Matrix metalloproteinases and cancer. Anticancer Res 2001;21:4207-4219.
Woessner JF Jr. MMPs and TIMPs-an historical perspective. Mol Biotechnol 2002;22:33-49.