2009, Number 4
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2009; 22 (4)
Clinic oncology, genomics and epigenomics on bronchogenic cancer. Part II
Cerecedo-Zapata CM, Gonzaga PR, Limón RDA, Álvarez MA, Téllez BJL, Pérez PC, Ávila-Moreno F
Language: Spanish
References: 55
Page: 316-327
PDF size: 170.45 Kb.
ABSTRACT
Application of high-throughput technologies for the massive analysis of genome and epigenome is still revolutionizing the contributions into the bronchopulmonary oncology area. This fact strongly supports the possibility that genetic and epigenetic markers could be incorporated as potential guiders and predictors of the chemotherapeutic, radiotherapeutic and surgical management of patients staged according to TNM classification norms. Nevertheless, in spite of advancements from basic and clinical research in bronchogenic cancer, incorporation of genetic/epigenetic tests still awaits their acceptance with this purpose. Preliminary results from our research group over epigenomic analysis in bronchogenic cancer suggested the presence of an epigenetic fingerprint in smoking-related pulmonary carcinomas, as compared with patients unexposed to such risk factor. In this context, advancement of research internationally is trying to consolidate and to confirm in the near future the development of genetic/epigenetic confirmatory diagnostic tests for the selection of the best treatment scheme for treating patients with bronchogenic cancer.
REFERENCES
Raimondi S, Boffetta P, Anttila S, et ál. Metabolic gene polymorphisms and lung cancer risk in non-smokers. An update of the GSEC study. Mut Res 2005;592:45-57.
Skuladottir H, Autrup H, Autrup J, et ál. Polymorphisms in genes involved in xenobiotic metabolism and lung cancer risk under the age of 60 years. A pooled study of lung cancer patients in Denmark and Norway. Lung Cancer 2005;48:187-199.
Ryk C, Kumar R, Thirumaran RK, Hou SM. Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never- and ever-smokers. Lung Cancer 2006;54:285-292.
Zienolddiny S, Campa D, Lind H, et ál. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006;27:560-567.
Zhang L, Huang J, Yang N, et ál. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 2006;103:9136-9141.
Aviel-Ronen S, Coe BP, Lau SK, et ál. Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features. Proc Natl Acad Sci U S A 2008;105:10155-10160.
Greenberg AK, Yee H, Rom WN. Preneoplastic lesions of the lung. Respir Res 2002;3:20.
Kallioniemi A, Kallioniemi OP, Sudar D, et ál. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258:818-821.
Matsuta M, Nishiya I. Comparative genomic hybridization (CGH). Hum Cell 1993;6:231-236.
du Manoir S, Speicher MR, Joos S, et ál. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 1993;90:590-610.
Houldsworth J, Chaganti RS. Comparative genomic hybridization: an overview. Am J Pathol 1994;145:1253-1260.
Massion PP, Kuo WL, Stokoe D, et ál. Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res 2002;62:3636-3640.
Berrieman HK, Ashman JN, Cowen ME, Greenman J, Lind MJ, Cawkwell L. Chromosomal analysis of non-small-cell lung cancer by multicolour fluorescent in situ hybridization. Br J Cancer 2004;90:900-905.
Sy SM, Wong N, Lee TW, et ál. Distinct patterns of genetic alterations in adenocarcinoma and squamous cell carcinoma of the lung. Eur J Cancer 2004;40: 1082-1094.
Dai Z, Zhu WG, Morrison CD, et ál. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis clAP1 and clAP2 as candidate oncogenes. Hum Mol Genet 2003;12:791-801.
Yokoi S, Yasui K, Iizasa T, Imoto I, Fujisawa T, Inazawa J. TERC identified as a probable target within the 3q26 amplicon that is detected frequently in non-small cell lung cancers. Clin Cancer Res 2003;9:4705-4713.
Sy SM, Fan B, Lee TW, et ál. Spectral karyotyping indicates complex rearrangements in lung adenocarcinoma of nonsmokers. Cancer Genet Cytogenet 2004;153:57-59.
Petersen I, Bujard M, Petersen S, et ál. Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 1997;57:2331-2335.
Bjorkqvist AM, Husgafvel-Pursiainen K, Anttila S, et ál. DNA gains in 3q occur frequently in squamous cell carcinoma of the lung, but not in adenocarcinoma. Genes Chromosomes Cancer 1998;22:79-82.
Luk C, Tsao MS, Bayani J, Shepherd F, Squire JA. Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 2001;125:87-99.
Pei J, Balsara BR, Li W, et ál. Genomic imbalances in human lung adenocarcinomas and squamous cell carcinomas. Genes Chromosomes Cancer 2001;31:282-287.
Tonon G, Wong KK, Maulik G, et ál. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A 2005;102:9625-9630.
Balsara BR, Testa JR. Chromosomal imbalances in human lung cancer. Oncogene 2002;21:6877-6883.
Ishkanian AS, Malloff CA, Watson SK, et ál. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004;36:299-303.
Bailey-Wilson JE, Amos CI, Pinney SM, et ál. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 2004;75:460-474.
Wong MP, Lam WK, Wang E, Chiu SW, Lam CL, Chung LP. Primary adenocarcinomas of the lung in nonsmokers show a distinct pattern of allelic imbalance. Cancer Res 2002;62:4464-4468.
Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, et ál. Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 2001;61:1309-1313.
Jiang F, Yin Z, Caraway NP, Li R, Katz RL. Genomic profiles in stage I primary non small cell lung cancer using comparative genomic hybridization analysis of cDNA microarrays. Neoplasia 2004;6:623-635.
Garnis C, Davies JJ, Buys TP, et ál. Chromosome 5p aberrations are early events in lung cancer: implication of glial cell line-derived neurotrophic factor in disease progression. Oncogene 2005;24:4806-4812.
McKay JD, Hung RJ, Gaborieau V, et ál. Lung cancer susceptibility locus at 5p15.33. Nat Genet 2008;40: 1404-1406.
Wang Y, Broderick P, Webb E, et ál. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008;40:1407-1409.
Landi MT, Chatterjee N, Yu K, et ál. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 2009;85:679-691.
Mavrogiannou E, Strati A, Stathopoulou A, Tsaroucha EG, Kaklamanis L, Lianidou ES. Real-time RT-PCR quantification of human telomerase reverse transcriptase splice variants in tumor cell lines and non-small cell lung cancer. Clin Chem 2007;53:53-61.
Stransky N, Vallot C, Reyal F, et ál. Regional copy number-independent deregulation of transcription in cancer. Nat Genet 2006;38:1386-1396.
Wong IH, Lo YM, Johnson PJ. Epigenetic tumor markers in plasma and serum: biology and applications to molecular diagnosis and disease monitoring. Ann N Y Acad Sci 2001;945:36-50.
Xue X, Zhu YM, Woll PJ. Circulating DNA and lung cancer. Ann N Y Acad Sci 2006;1075:154-164.
Song L, Coppola D, Livingston S, Cress D, Haura EB. Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 2005;4:267-276.
Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000;16:168-174.
Esteller M, Toyota M, Sanchez-Cespedes M, et ál. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 2000;60:2368-2371.
Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997;57:837-841.
Wong IH, Ng MH, Lee JC, Lo KW, Chung YF, Huang DP. Transcriptional silencing of the p16 gene in human myeloma-derived cell lines by hypermethylation. Br J Haematol 1998;103:168-175.
Belinsky SA, Nikula KJ, Palmisano WA, et ál. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998;95:11891-11896.
Costello JF, Frühwald MC, Smiraglia DJ, et ál. Aberrant CpG-island methylation has non-random and tumor-type-specific patterns. Nat Genet 2000;24:132-138.
Zöchbauer-Müller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001;61:249-255.
Fujiwara K, Fujimoto N, Tabata M, et ál. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 2005;11:1219-1225.
Fukasawa M, Kimura M, Morita S, et ál. Microarray analysis of promoter methylation in lung cancers. J Hum Genet 2006;51:368-374.
Machida EO, Brock MV, Hooker CM, et ál. Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Res 2006;66:6210-6218.
Anglim PP, Galler JS, Koss MN, et ál. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer 2008;7:62.
Paci M, Maramotti S, Bellesia E, et ál. Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer 2009;64:92-97.
Gius D, Bradbury CM, Sun L, et ál. The epigenome as a molecular marker and target. Cancer 2005;104: 1789-1793.
Cho HS, Park JH, Kim YJ. Epigenomics: novel aspect of genomic regulation. J Biochem Mol Biol 2007;40:151-155.
Brena RM, Costello JF. Genome-epigenome interactions in cancer. Hum Mol Genet 2007;16 Spec No 1:R96-105.
Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development 2007;134: 3959-3965.
Rauch T, Wang Z, Zhang X, et ál. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci U S A 2007;104: 5527-5532.
Rauch TA, Zhong X, Wu X, et ál. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 2008;105: 252-257.