2009, Número 4
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2009; 22 (4)
Mecanismos moleculares y celulares de la respuesta inmune en el pulmón
Jiménez-Álvarez LA, Zúñiga RJ, Ramírez-Martínez G
Idioma: Español
Referencias bibliográficas: 59
Paginas: 304-315
Archivo PDF: 157.02 Kb.
RESUMEN
La acción integral de los diversos mecanismos de defensa a lo largo del aparato respiratorio permite remover o neutralizar partículas y/o microorganismos que entran por inhalación en las estructuras respiratorias. Estos mecanismos comprenden barreras mecánicas y fagocitosis, que pueden activarse por estímulos no específicos o por estímulos inmunogénicos. Son importantes para estos eventos los mecanismos de la inmunidad innata y la capacidad de células pulmonares como células dendríticas y macrófagos para iniciar una respuesta inmune antígeno-específica (humoral y celular) así como una reacción inflamatoria localizada. Los macrófagos alveolares y los linfocitos poseen la capacidad de producir moléculas como citocinas y factores de crecimiento y afectar a otras células inflamatorias, estructurales y efectoras. Los linfocitos B producen anticuerpos y los linfocitos T interactúan con células epiteliales infectadas, fagocíticas o con células tumorales para producir la lisis celular. Los linfocitos T cooperadores activados producen un amplio espectro de citocinas, dependiendo de las circunstancias de su activación, y determinan la polarización de las subpoblaciones efectoras de linfocitos.
REFERENCIAS (EN ESTE ARTÍCULO)
Moretta A, Bottino C, Vitale M, et ál. Receptors for HLA class 1-molecules in human natural killer cells. Annu Rev Immunol 1996;14:619-648.
Moretta A, Bottino C, Vitale M, et ál. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001;19: 197-223.
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313-1318.
Brandtzaeg P, Pabst R. Let’s go mucosal: communication on slippery ground. Trends Immunol 2004;25: 570-577.
Drayton DL, Chan K, Lesslauer W, Lee J, Ying XY, Ruddle NH. Lymphocyte traffic in lymphoid organ neogenesis: differential roles of LTa and LTab. Adv Exp Med Biol 2002;512:43-48.
Delventhal S, Hensel A, Petzoldt K, Pabst R. Effects of microbial stimulation on the number, size and activity of bronchus-associated lymphoid tissue (BALT) structures in the pig. Int J Exp Pathol 1992;73:351-357.
Masopust D, Vezys V, Usherwood EJ, et ál. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol 2004;172:4875-4882.
Hoffmann JA. The immune response of Drosophila. Nature 2003;426:33-38.
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-376.
McGettrick AF, O’Neill LA. The expanding family of MyD88-like adapters in Toll-like receptor signal transduction. Mol Immunol 2004;41:577-582.
O’Neill LA, Fitzgerald KA, Bowie AG. The Toll- IL-1 receptor adaptor family grows to five members. Trends Immunol 2003;24:286-290.
Schultz MJ, Rijneveld AW, Florquin S, Edwards CK, Dinarello CA, van der Poll T. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 2002;282:L285-L290.
Mehrad B, Strieter RM, Standiford TJ. Role of TNK-alpha in pulmonary host defense in murine invasive aspergillosis. J Immunol 1999;162:1633-1640.
Smith S, Liggitt D, Jeromsky E, Tan X, Skerrett SJ, Wilson CB. Local role for tumor necrosis factor alpha in the pulmonary inflammatory response to Mycobacterium tuberculosis infection. Infect Immun 2002;70:2082-2089.
Droemann D, Goldmann T, Branscheid D, et ál. Toll-like receptor 2 is expressed by alveolar epithelial cells type II and macrophages in the human lung. Histochem Cell Biol 2003;119:103-108.
Chelen CJ, Fang Y, Freeman GJ, et ál. Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 1995;95:1415-1421.
Toossi Z, Hirsch CS, Hamilton BD, Knuth CK, Friedlander MA, Rich EA. Decreased production of TGF-beta1 by human alveolar macrophages compared with blood monocytes. J Immunol 1996;156:3461-3468.
Muijsers RB, ten Hacken NH, van Ark I, Folkerts G, Nijkamp FP, Postma DS. L-Arginine is not the limiting factor for nitric oxide synthesis by human alveolar macrophages in vitro. Eur Respir J 2001; 18: 667-671.
Lem VM, Lipscomb MF, Weissler JC, et ál. Bronchoalveolar cells from sarcoid patients demonstrate enhanced antigen presentation. J Immunol 1985;135:1766-1771.
Venet A, Hance AJ, Saltini C, Robinson BW, Crystal RG. Enhanced alveolar macrophage-mediated antigen-induced T-lymphocyte proliferation in sarcoidosis. J Clin Invest 1985;75:293-301.
Moller DR. Cells and cytokines involved in the pathogenesis of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1999;16:24-31.
Pons AR, Noguera A, Blanquer D, Sauleda J, Pons J, Agustí AG. Phenotypic characterization of alveolar macrophages and peripheral blood monocytes in COPD. Eur Respir J 2005;25:647-652.
Sivori S, Falco M, Della Chiesa M, et ál. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumours and dendritic cells. Proc Natl Acad Sci USA 2004;101:10116-10121.
Schmidt KN, Leung B, Kwong M, et ál. APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol 2004; 172:138-143.
Pisegna S, Pirozzi G, Piccoli M, Frati L, Santoni A, Palmieri G. p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood 2004;104:4157-4164.
Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2002;2:957-964.
Marcenaro E, Della Chiesa M, Bellora F, et ál. IL-12 or IL-4 prime NK cells to mediate functionally divergent interactions with dendritic cells or tumors. J Immunol 2005;174:3992-3998.
Della Chiesa M, Sivori S, Castriconi R, Marcenaro E, Moretta A. Pathogen-induced private conversations between natural killer and dendritic cells. Trends Microbiol 2005;13:128-136.
Marsland BJ, Harris NL, Camberis M, Kopt M, Hook SM, Le Gros G. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells. Proc Natl Acad Sci USA 2004;101: 6116-6121.
Skeen MJ, Freeman MM, Ziegler HK. Changes in peritoneal myeloid populations and their proinflammatory cytokine expression during infection with Listeria monocytogenes are altered in the absence of gamma/delta T cells. J Leukoc Biol 2004;76:104-115.
Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL. Gamma/delta T cell-induced hyaluronan production by epithelial cells regulates inflammation. J Exp Med 2005;201:1269-1279.
Brandes M, Willimann K, Moser B. Professional antigen-presenting function by human gamma/delta T cells. Science 2005;309:264-268.
Kheradmand F, Kiss A, Xu J, Lee SH, Kolattukudy PE, Corry DB. A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J Immunol 2002;169:5904-5911.
Wan H, Winton HL, Soeller C, et ál. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999;104:123-133.
Von Garnier C, Filgueira L, Wikstrom M, et ál. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J Immunol 2005;175:1609-1618.
Liu LM, MacPherson GG. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J Exp Med 1993;177:1299-1307.
Liu LM, MacPherson GG. The role of dendritic cells in the uptake and presentation of oral antigens. Adv Exp Med Biol 1994;355:81-86.
Oriss TB, Ostroukhova M, Seguin-Devaux C, et ál. Dynamics of dendritic cell phenotype and interactions with CD4+ T cells in airway inflammation and tolerance. J Immunol 2005;174:854-863.
Van Furth R, Diesselhoff-den Dulk MC, Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med 1973;138:1314-1330.
Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SH, Seiler P. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol 2003;171:1148-1155.
Bender A, Albert M, Reddy A, et ál. The distinctive features of influenza virus infection of dendritic cells. Immunobiology 1998;198:552-567.
Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Puré E, Panettieri RA Jr. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med 1994; 180:807-816.
Lobb RR, Hemler ME. The pathophysiologic role of alpha4 integrins in vivo. J Clin Invest 1994;94:1722-1728.
Kanehiro A, Takeda K, Joetham A, et ál. Timing of administration of anti-VLA-4 differentiates airway hyper responsiveness in the central and peripheral airways in mice. Am J Respir Crit Care Med 2000;162(3 Pt 1):1132-1139.
Borchers MT, Crosby J, Farmer S, et ál. Blockade of CD49d inhibits allergic airway pathologies independent of effects on leukocyte recruitment. Am J Physiol Lung Cell Mol Physiol 2001;280:L813-L821.
Ray SJ, Franki SN, Pierce RH, et ál. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 Tcell-mediated immune protection against heterologous influenza infection. Immunity 2004;20:167-179.
Marshall DR, Olivas E, Andreansky S, et ál. Effector CD8+ T cells recovered from an influenza pneumonia differentiate to a state of focused gene expression. Proc Natl Acad Sci USA 2005;102:6074-6079.
El-Asady R, Yuan R, Liu K, et ál. TG-[beta]-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J Exp Med 2005;201: 1647-1657.
Beyer M, Wang H, Peters N, et ál. The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo. Respir Res 2005;6:70.
Tager AM, Bromley SK, Medoff BD, et ál. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol 2003;4:982-990.
Langrish CL, Chen Y, Blumenschein WM, et ál. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233-240.
Yen D, Cheung J, Scheerens H, et ál. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006;116:1310-1316.
Veldhoen M, Uyttenhove C, van Snick J, et ál. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 2008;9: 1341-1346.
Schmitt E, Germann T, Goedert S, et ál. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 1994;153:3989-3996.
Vourlekis JS, Sawyer RT, Newman LS. Sarcoidosis: developments in etiology, immunology, and therapeutics. Adv Intern Med 2000;45:209-257.
Paramothayan NS, Jones PW. Corticosteroids for pulmonary sarcoidosis. Cochrane Database Syst Rev 2000;(2):CD001114.
Baughman RP, Winget DB, Lower EE. Methotrexate is steroid sparing in acute sarcoidosis: results of a double blind, randomized trial. Sarcoidosis Vasc Diffuse Lung Dis 2000;17:60-66.
Müller-Quernheim J, Kienast K, Held M, Pfeifer S, Costabel U. Treatment of chronic sarcoidosis with an azathioprine/prednisolone regimen. Eur Respir J 1999;14:1117-1122.
Yee AM, Pochapin MB. Treatment of complicated sarcoidosis with infliximab anti-tumor necrosis factor-alpha therapy. Ann Intern Med 2001; 135:27-31.