2009, Number 4
Next >>
Vet Mex 2009; 40 (4)
Genetic and phenotypic covariances for days open and lactation curve characteristics in Holstein cows from northern Mexico
López-Ordaz R, Castillo-Juárez H, Montaldo HH
Language: English/Spanish
References: 51
Page: 343-356
PDF size: 176.06 Kb.
ABSTRACT
The aim of this study was to estimate genetic and phenotypic (co)variances for lactation curve traits and for days open in Holstein cows. Data included 1 579 lactations from 766 cows, daughters of 126 sires in a dairy herd in northern Mexico. The studied traits within lactation were days open (DO), peak milk production (PMAX), days to peak milk production (DPMAX), 305-day milk production (MP305), lactation persistency (based on Wood equation) (PERSW), lactation persistency expressed as the natural logarithm of the Wood equation persistency (LNPERSW), and lactation persistency measured as (production at day 305/PMP) × 100 (PERS). Covariance components were obtained by single trait and bivariate mixed linear models using restricted maximum likelihood. In general, heritabilities estimated using the repeatability model yielded lower values than those obtained based on within lactation analysis. Average heritabilities estimated with single trait models within lactation were 0.13 ± 0.09, 0.28 ± 0.09, 0.28 ± 0.09, 0.17 ± 0.10 and 0.22 ± 0.10, for DO, MP305, PMAX, DPMAX, and LNPERSW, respectively. Genetic correlations between MP305 and DO (0.66±0.57) and between PMAX and DO (0.55 ± 0.71) were unfavorable for first lactation cows, but with large standard errors. Results confirmed a low heritability for DO, but with estimates possibly larger in younger cows. Genetic correlation between MP305 and PMAX was 0.89 ± 0.09, and LNPERSW and DPMAX was 0.98 ± 0.21 for the third lactation, indicating that DPMAX is a good measure of persistency. No evidence for genetic correlation between MP305 and LNPERSW was found.
REFERENCES
1.HOFER A. Variance component estimation in animal breeding: a review. J Anim Breed Genet 1998; 115:247- 265.
2.HANSEN LB. Consequences of Selection for Milk yield from a geneticist´s viewpoint. J Dairy Sci 2000; 83:1145- 1150.
3.VEERKAMP RF. Selection for economic efficiency of dairy cattle using information on live weight and feed intake: a review. J Dairy Sci 1998; 81:1109-1119.
4.MOURITS MCM, HUIRNE RBM, DIJKHUIZEN AA, KRISTENSES AR, GALLIGAN DT. Economic optimization of dairy heifer management decisions. Agric Sys 1999; 61:17-31.
5.HOLMANN FJ, SHUMWAY CR, BLAKE RW, SCHWART RB, SUDWEEKS EM. Economic value of days open for Holstein cows of alternative milk yields ith varying calving intervals. J Dairy Sci 1984; 67:636- 643.
6.STRANDBERG E, OLTENACU PA. Economic consequences of different calving intervals. Acta Agric Scand 1989; 39: 407-420.
7.OLESEN I, GROEN AF, GJERDE B. Definition of animal breeding goals for sustainable production systems. J Anim Sci 2000; 78, 570–582.
8.GROSSMAN M, HARTZ SM, KOOPS WJ. Persistency of lactation yield: A novel approach. J Dairy Sci 1999; 82:2192-2197.
9.DEKKERS JCM, TEN HAG JH, WEERSINK A. Economic aspects of persistency of lactation in dairy cattle. Livest Prod Sci 1998; 53:237-252.
10.GENGLER N. Persistency of lactation yields: A review. Workshop on genetic improvement of functional traits in cattle. Interbull Bull 1996; 12:87-95.
11.SÖLKNER J, FUCHS W. A comparison of different measures of persistency with special respect to variation of test-day milk yields. Livest Prod Sci 1987; 16:305-319.
12.CASTILLO-JUAREZ H, OLTENACU PA, BLAKE RW, MCCULLOCH CE, CIENFUEGOS-RIVAS EG. Effect of herd environment on the genetic and phenotypic relationships among milk yield, conception rate and somatic cell score in Holstein cattle. J Dairy Sci 2000; 83: 807-814.
13.DECHOW CD, ROGERS GW, CLAY JS. Heritabilities and correlations among body condition scores, production traits, and reproductive performance. J Dairy Sci 2001; 84: 266-275.
14.VEERKAMP RF, KOENEN EPC, DE JONG G. Genetic correlations among body condition score, yield, and fertility in first-parity cows estimated by random regression models. J Dairy Sci 2001; 84:2327-2335.
15.DECHOW CD, ROGERS GW, CLAY JS. Heritability and correlations among body condition score loss,body condition score, production and reproductive performance. J Dairy Sci 2002; 85: 3062-3070.
16.PRYCE JE, ROYAL MD, GARNSWORTHY PC, MAO IL. Fertility in the high-producing dairy cow. Livest Prod Sci 2004; 86:125-135.
17.MONTALDO HH, TORRES S. Parámetros genéticos y fenotípicos de la producción de leche e intervalo entre partos de una población de vacas Holstein en México. Acta Universitaria 1992; 2:37-43.
18.LEMUS-FLORES C, BECERRIL-PEREZ CM, ORTIZSOLORIO CA, ESPINOZA-VELAZQUEZ J. Effect of percentage of white coat color on milk production and reproduction of first parturition Holsteins cows in some climates of Mexico. Agrociencia 2002; 36: 23-30.
19.GARCÍA E. Modificaciones al sistema de clasificación climática de Köppen. México DF: Instituto de Geografía, UNAM. 1988:220.
20.WOOD PDP. Algebraic model of the lactation curve in cattle. Nature 1967; 216:164-165.
21.REKAYA R, CARABAÑO M.J, TORO M.A. Bayesian analysis of lactation curves of Holstein-Friesian cattle using a nonlinear model. J Dairy Sci 2000; 83:2691- 2701.
22.GILMOUR AR, CULLIS B R, WELLIAM S J, THOMPSON R. ASREML. Reference manual. Harpenden, U. K: IACR-Rothamsted Exp. Station, 2002.
23.RAVAGNOLO O, MISZTAL I. Effect of heat stress on nonreturn rate in Holstein cow: genetic analyses. J Dairy Sci 2002; 85:3092-3100.
24.ABDALLAH JM, MC DANIEL BT. Genetic parameters and trends of milk, fat, days open, and body weight after calving in North Carolina Experimental herds. J Dairy Sci 2000; 83:1364-1370.
25.DRUET T, JAFFRÉZIC F, BOICHARD D, DUCROCQ V. Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. J Dairy Sci 2003; 86:2480-2490.
26.PALACIOS-ESPINOSA A, RODRÍGUEZ-ALMEIDA F, JIMÉNEZ-CASTRO J, ESPINOZA-VILLAVICENCIO JL, NÚÑEZ-DOMÍNGUEZ R. Evaluación genética de un hato Holstein en Baja California Sur, utilizando un modelo animal con mediciones repetidas. Agrociencia 2001; 35:347-352.
27.VALENCIA PM, RUIZ FJ, MONTALDO HH. Genetic and environmental variance components for milk yield across regions, time periods and herd levels for Holstein attle in Mexico. Revista Científica-FCV-LUZ. 2004; 14:404-411.
28.MUIR BL, FATEHI J, SCHAEFFER LR. Genetic relationships between persistency and reproductive performance in first-lactation Canadian Holsteins. J Dairy Sci 2004; 87:3029-3037.
29.MONTALDO HH, TORRES S. Repetibilidad de la producción de leche e intervalo entre partos en una población de vacas Holstein en México. Arch Zoot 1993; 42: 361-366.
30.LÓPEZ OR, LARA FV. Caracterización del mejoramiento genético de bovinos lecheros en México (tesis de licenciatura). Chapingo, México: Universidad Autónoma Chapingo, 1996. Agradecimientos Los autores agradecen a Marcia Castillo Mendoza por revisar la versión en inglés de este artículo.
31.GENGLER N, TIJANI A, WIGGANS GR, PHILPOT JC. Indirect estimation of (co)variance functions for test-day yields during first and second lactations in the United States. J Dairy Sci 2001; 84:542-570.
32.HAILE-MARIAM M, BOWMAN PJ, GODDARD ME. Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livest Prod Sci 2003; 80:189-200.
33.ROOS APW, HARBERS AGF, DE JONG, G. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in the Netherlands. J Dairy Sci 2004; 87:2693-2701.
34.VAN DER LINDE R, GROEN A, DE JONG G. Estimation of genetic parameters for persistency of milk production in dairy cattle. Interbull Bull 2000; 25:1-4.
35.JAKOBSEN JH, REKAYA R, JENSEN J, SORENSEN DA, MADSEN P, GIANOLA D et al. Bayesian estimate of covariance components between lactation curve parameters and disease liability in Danish Holstein cows. J Dairy Sci 2003;86:3000-3007.
36.SWALVE HH, GENGLER N. Genetic of lactation persistency. J Anim Sci 1999; 24:75-82.
37.TEKERLI M, AKINCI Z, DOGAN I, AKCAN A. Factors affecting the shape of lactation curves of Holstein cows from the Balikesir Province of Turkey. J Dairy Sci 2000; 83:1381-1386.
38.REKAYA R, CARABAÑO MJ, TORO MA. Use of test day yields for the genetic evaluation of production traits in Holstein Friesian cattle. Livest Prod Sci 1999;57:203-217.
39.DEMATAWEWA CMB, BERGER PJ. Genetic and phenotypic parameters for 305-day yield, fertility, and survival in Holstein. J Dairy Sci 1998; 81:2700-2709.
40.KADARMIDEEN HN, THOMPSON R, COFFEY MP, KOSSAIBATI MA. Genetic parameters and evaluations from single- and multiple- trait analysis of dairy cow fertility and milk production. Livest Prod Sci 2003; 81:183-195.
41.DEMEKE S, NESER FWC, SCHOEMAN SJ. Estimates of genetic parameters for Boran, Friesian and crosses of Friesian and Jersey with the Boran cattle in the tropical highlands of Ethiopia: reproduction traits. J Anim Breed Genet 2004; 121:57-65.
42.OLORI VE, MEUWISSEN THE, VEERKAMP RF. Calving interval and survival breeding values as measure system with seasonal calving. J Dairy Sci 2002; 85:689-696.
43.JAKOBSEN JH, MADSEN P, JENSEN J, PEDERSEN J, CHRISTENSEN LG, SORENSEN DA. Genetic parameters for milk production and persistency for Danish Holstein estimated in random regression model using REML. J Dairy Sci 2002;85:1607-1616.
44.VEERKAMP RF, OLDENBROEK JK, VAN DER GAAST HJ, VAN DER WERF JHJ. Genetic correlation between days until start of luteal activity and milk yield, energy balance, and live weights. J Dairy Sci 2000; 83:577-583.
45.RAHEJA KL, BURNSIDE EB, SCHAEFFER LR. Relationships between fertility and production in Holstein dairy cattle in different parity. J Dairy Sci 1989; 72:2670-2678.
46.OLTENACU PA, FRICK A, LINDHÉ B. Relationship of fertility to milk yield in Swedish cattle. J Dairy Sci 1991; 74. 264-268.
47.ROMAN MR, WILCOX CJ. Bivariate animal model estimates of genetic, phenotypic, and environmental correlations for production, reproduction, and somatic cells in Jerseys. J Dairy Sci 2000; 83:829-835.
48.RUIZ LF, VALENCIA PM, MONTALDO HH, CASTILLO- JUAREZ H. Genetic parameters for somatic cell counts, production and reproduction trails in primiparous Mexican Holstein cows. 8th World Congress on Genetics Applied to Livestock Production; 2006 August 13-18: Belo Horizonte, MG, Brazil. Belo Horizonte, MG, Brazil: Universidad de Minas Gerais y EMBRAPA – Cenargen FAO. CD – ROM- 636.0820063 page 21.
49.DU PLESSIS M, ROUX CZ. A breeding goal for South African Holstein Friesians in terms of economic weights in percentage units.S Afr J Anim Sci 1999; 29:237-244.
50.WOLFOVA M, PRIBYL J, WOLF J. Economic weights for production and functional traits of Czech dairy cattle breeds. Czech J Anim Sci 2001; 46:421-432.