2008, Number 4
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2008; 21 (4)
PD-1 and its ligands as regulators of the immune response
Vargas-Rojas MI, Jiménez-Álvarez L, Ramírez G, Torres-García D, Barquera R, Gastelum-Martínez AA, Zúñiga J
Language: Spanish
References: 57
Page: 272-279
PDF size: 102.76 Kb.
ABSTRACT
The programmed death 1 (PD-1) molecule and its ligands PD-L1 and PD-L2 are important in the control of T cell activation. The balance of T cell-mediated immunity is determinant in the control of infectious diseases and cancer and the maintaining of the self-tolerance. The induction and preservation of T cell tolerance via the PD-1/PDL pathway limit responses of effector T cells avoiding immune-mediated damage. Also, alterations in the interaction of PD-1/PD-L is used by tumor cells to escape from the immune control and promote malignancies, besides certain microorganisms can alter the expression of these molecules resulting in the development of chronic infections. Discovery of this negative regulation pathway of T cell activation provides a new opportunity for clinical application in several human diseases through the use of agonists and antagonists of PD-1.
REFERENCES
Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 1975;53:27-42.
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548.
Okazaki T, Honjo T. The PD- 1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27:195-201.
Parry RV, Chemnitz JM, Frauwirth KA, et ál. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-9553.
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-3895.
Liang SC, Latchman YE, Buhlmann JE, et ál. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003;33: 2706-2716.
Zhang X, Schwartz JC, Guo X, et ál. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 2004;20:337-347.
Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 1994;23: 704-706.
Freeman GJ, Long AJ, Iwai Y, et ál. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027-1034.
Ishida M, Iwai Y, Tanaka Y, et ál. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002;84:57-62.
Latchman Y, Wood CR, Chernova T, et ál. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-268.
Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5:1365-1369.
Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 2003;100:5336-5341.
Agata Y, Kawasaki A, Nishimura H, et ál. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996;8:765-772.
Yamazaki T, Akiba H, Iwai H, et ál. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002;169:5538-5545.
Brown JA, Dorfman DM, Ma FR, et ál. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003;170:1257-1266.
Carter L, Fouser LA, Jussif J, et ál. PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur J Immunol 2002; 32:634-643.
Matsumoto K, Inoue H, Nakano T, et ál. B7-CD regulates asthmatic response by an INF-gamma-dependent mechanism. J Immunol 2004;172:2530-2541.
Fukushima A, Yamaguchi T, Azuma M, Yagita H, Ueno H. Involvement of programmed death-ligand 2 (PD-L2) in the development of experimental allergic conjunctivitis in mice. Br J Ophthalmol 2006;90: 1040-1045.
Nishimura H, Okazaki T, Tanaka Y, et ál. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319-322.
Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-151.
Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1 _/_ mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 2005;102:11823-11828.
Prokunina L, Castillejo-López C, Oberg F, et ál. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32:666-669.
Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 2004;16:513-521.
Lindqvist AK, Steinsson K, Johanneson B, et ál. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000;14:169-178.
Thorburn CM, Prokunina-Olsson L, Sterba KA, et ál. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun 2007;8:279-287.
Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et ál. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum 2004;50:2590-2597.
Ferreiros-Vidal I, D’Alfonso S, Papasteriades C, et ál. Bias in association studies of systemic lupus erythematosus susceptibility due to geographical variation in the frequency of a programmed cell death 1 polymorphism across Europe. Genes Immun 2007;8:138-146.
Kong EK, Prokunina-Olsson L, Wong WH, et ál. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 2005;52:1058-1062.
Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005;50:264-266.
Prokunina L, Padyukov L, Bennet A, et ál. Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 2004;50:1770-1773.
Lin SC, Yen JH, Tsai JJ, et ál. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum 2004;50: 770-775.
Kong EK, Prokunina-Olsson L, Wong WH, et ál. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 2005;52:1058-1062.
Iwamoto T, Ikari K, Inoue E, et ál. Failure to confirm association between PDCD1 polymorphisms and rheumatoid arthritis in a Japanese population. J Hum Genet 2007;52:557-560.
Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006;90:51-81.
Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol 2002;3:999-1005.
Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 2003;81: 281-287.
Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 2008;111:3635-3643.
Thompson RH, Gillett MD, Cheville JC, et ál. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 2004;101: 17174-17179.
Thompson RH, Dong H, Lohse CM, et ál. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 2007;13:1757-1761.
Yamamoto R, Nishikori M, Kitawaki T, et ál. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008;111:3220-3224.
He YF, Zhang GM, Wang XH, et ál. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 2004;173:4919-4928.
Hirano F, Kaneko K, Tamura H, et ál. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005;65:1089-1096.
Liu J, Hamrouni A, Wolowiec D, et ál. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-g and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007;110:296-304.
Geng H, Zhang GM, Xiao H, et ál. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 2006;118:2657-2664.
Barber DL, Wherry EJ, Masopust D, et ál. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006;439:682-687.
Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol 2004;78:5535-5545.
Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 2006;203:2223-2227.
Martinic MM, von Herrath MG. Novel strategies to eliminate persistent viral infections. Trends Immunol 2008;29:116-124.
Petrovas C, Casazza JP, Brenchley JM, et ál. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 2006;203:2281-2292.
Day CL, Kaufmann DE, Kiepiela P, et ál. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006;443:350-354.
Trautmann L, Janbazian L, Chomont N, et ál. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 2006;12:1198-1202.
Boettler T, Panther E, Bengsch B, et ál. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection. J Virol 2006;80: 3532-3540.
Boni C, Fisicaro P, Valdatta C, et ál. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 2007;81:4215-4225.
Urbani S, Amadei B, Tola D, et ál. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 2006;80: 11398-11403.
Yao ZQ, King E, Prayther D, Yin D, Moorman J. T cell dysfunction by hepatitis C virus core protein involves PD-1/PDL-1 signaling. Viral Immunol 2007;20: 276-287.
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677-704.