2008, Number 4
<< Back
Bioquimia 2008; 33 (4)
Evidence of lipidic microdomain existence in organelle membranes
Martínez-Abundis E, Zazueta-Mendizábal C
Language: Spanish
References: 56
Page: 164-170
PDF size: 113.68 Kb.
ABSTRACT
Although it is a controversial topic, the lipid microdomain theory has overcome the adverse opinions and finally its existence has been proved by diverse microscopy techniques. Currently, there is evidence with regard to this kind of membrane domains are in fact in the cell organelles such as the endoplasmatic reticulum, the Golgi complex, and the mitochondria and they are not restricted to the plasmatic membrane. In these organelles, the lipid domains could participate in important cell functions, e.g. protein sorting and delivering, protein retention, cholesterol transport between cell compartments, vesicle formation and death signaling with mitochondrion participation. There is still a great deal of research to do in order to reach a solid theory of organelle-lipid domains, principally because, in some of those organelles, cholesterol and sphingolipids, that are important to build and stabilize lipid membranes, are present at lower concentrations. However, it is an interesting topic of research that will contribute with important information in the coming years. The purpose of this review is enlisting the recent evidence about the existence and the probable functions of lipid rafts in the cell organelles.
REFERENCES
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972; 175: 720-31.
Peters MW, Mehlhorn IE, Barber KR, Grant CW. Evidence of a distribution difference between two gangliosides in bilayer membranes. Biochim Biophys Acta. 1984; 778: 419-28.
Thompson TE, Tillack TW. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985; 14: 361-86.
Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD. The concept of lipid domains in membranes. J Cell Biol. 1982; 94: 1-6.
Vereb G, Szöllosi J, Matkó J, Nagy P, Farkas T, Vígh L, et al. Dynamic, yet structurated: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA. 2003; 100: 8053-8.
Barenholz Y. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell Biochem. 2004; 37: 167-215.
Zeyda M, Stulnig TM. Lipid rafts & Co.: an integrated model of membrane organization in T cell activation. Prog Lipid Res. 2006; 45: 187-202.
Chini B, Parenti M. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol. 2004; 32: 325-38.
Field KA, Holowka D, Baird B. Structural aspects of the association of FcRI with detergent-resistant membranes. J Biol Chem. 1999; 274: 1753-8.
Polyak MJ, Taylor SH, Deans JP. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol. 1998; 161: 3242-8.
Aarts LH, Verkade P, van Dalen JJ, van Rozen AJ, Gispen WH, Schrama LH, et al. B-50 /GAP-43 potentiates cytoskeletal reorganization in raft domains. Mol Cell Neurosci. 1999; 14: 85-97.
Babiychuk EB, Draeger A. Annexins in cell membrane dynamics. Ca2+-regulated association of lipid microdomains. J Cell Biol. 2000; 150: 1113-24.
Brdicková N, Brdicka T, Andera L, Spicka J, Angelisová P, Milgram SL, et al. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 2001; 507: 133-6.
Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002; 296: 913-6.
Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol Membr Biol. 1999; 16: 145-56.
Magee AI, Parmryd I. Detergent-resistant membranes and the protein composition of lipid rafts. Genome Biol. 2003; 4: 234.
Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006; 45: 279-94.
Puertollano R, Alonso MA. A short peptide motif at the carboxyl terminus is required for incorporation of the integral membrane MAL protein to glycolipid-enriched membranes. J Biol Chem. 1998; 273: 12740-5.
Perschl A, Lesley J, English N, Hyman R, Trowbridge IS. Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. J Cell Sci. 1995; 108: 1033-41.
Shaw AS. Lipid Rafts: now you see them, now you don’t. Nat. Immunol. 2006; 7: 1139-42.
Munro S. Lipid rafts: elusive or illusive? Cell. 2003; 115: 377-88.
Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys J. 2002; 83: 2693-701.
Hansen GH, Niels-Christiansen LL, Thorsen E, Immerdal L, Danielsen EM. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J Biol Chem. 2000; 275: 5136-42.
Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell. 2001; 106: 403-11.
Kenworthy AK, Petranova N, Edidin M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell. 2000; 11: 1645-55.
Schütz GJ, Kada G, Pastushenko VP, Schindler H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 2000; 19: 892-901.
Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci. 2003; 100: 15554-9.
Pralle A, Keller P, Florin EL, Simons K, Hörber JK. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000; 148: 997-1008.
Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Biología molecular de la célula. 3Ş ed. Barcelona, Espańa: Ediciones Omega; 2003. p. 509-17.
Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol. 2001; 13: 470-7.
Parton RG. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem. 1994; 42: 155-66.
Browman DT, Resek ME, Zajchowski LD, Robbins SM. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci. 2006; 119: 3149-60.
Wu WI, Voelker DR. Reconstitution of phosphatidylserine transport from chemically defined donor membranes to phosphatidylserine decarboxylase 2 implicates specific lipid domains in the process. J Biol Chem. 2004; 279: 6635-42.
Piccardo P, Langeveld JP, Hill AF, Dlouhy SR, Young K, Giaccone G, et al. An antibody raised against a conserved sequence of the prion protein recognizes pathological isoforms in human and animal prion diseases, including Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Am J Pathol. 1998; 152: 1415-20.
Sarnataro D, Campana V, Paladino S, Stornaiuolo M, Nitsch L, Zurzolo C. PrPc association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell. 2004; 15: 4031-42.
Gkantiragas I, Brügger B, Stüven E, Kaloyanova D, Li XY, Löhr K, et al. Sphingomyelin-enriched microdomains at the Golgi complex. Mol Biol Cell. 2001; 1819-33.
Bretscher MS, Munro S. Cholesterol and the Golgi apparatus. Science. 1993; 261: 1280-1.
Danielsen EM, van Deurs B. A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epitelial cells. J Cell Biol. 1995; 131: 939-50.
Fiedler K, Parton RG, Kellner R, Etzold T, Simons K. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J. 1994; 13: 1729-40.
Lisanti MP, Rodriguez-Boulan E. Glycosphingolipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends Biochem Sci. 1990; 3: 113-8.
Lipardi C, Nitsch L, Zurzolo C. Detergent-insoluble GPI-anchored proteins are apically sorted in Fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell. 2000; 11: 531-42.
Sotgia F, Razani B, Bonuccelli G, Schubert W, Battista M, Lee H, et al. Intracellular retention of glycosylphosphatidyl inositol-linked proteins in caveolin-deficient cells. Mol Cell Biol. 2002; 22: 3905-26.
Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol. 2001; 153: 529-41.
Rejendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci. 2005; 118: 1099-1102.
Heino S, Lusa S, Somerharju P, Ehnholm C, Olkkonen VM, Ikonen E. Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci. 2000; 97: 8375-80.
Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM. A mitochondrial pool of sphingomyelin is envolved in TNFa-induced Bax translocation to mitochondria. Biochem J. 2005; 386: 445-51.
De Maria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science. 1997; 277: 1652-5.
Garofalo T, Giammarioli AM, Misasi R, Tinari A, Manganelli V, Gambardella L, et al. Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells. Cell Death Differ. 2005; 12: 1378-89.
Susin SA, Zamzami N, Kroemer G. Mitochondria as regulator of apoptosis: doubt no more. Biochim Biophys Acta. 1998; 1366: 151-65.
Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999; 399: 483-7.
Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA. 1998; 95: 14681-6.
Martínez-Abundis E, García N, Correa F, Franco M, Zazueta C. Changes in specific lipids regulate BAX-induced mitochondrial permeability transition. FEBS J. 2007; 274: 6500-10.
Mayor S, Sabharanjak S, Maxfield FR. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 1998; 17: 4626-38.
Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: The importance of maintaining “clean” cells. Autophagy. 2005; 1: 131-40.
Kaushik S, Kiffin R, Cuervo AM. Chaperone-mediated autophagy and aging: a novel regulatory role of lipids revealed. Autophagy. 2007; 3: 387-9.
Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J. 2006; 25: 3921-33.