Language: Spanish
References: 22
Page: 491-497
PDF size: 201.45 Kb.
ABSTRACT
Background: Fluordeoxyglucose (
18FDG) is the most common radiotracer used for PET/CT studies. It enters the cell because of the glucose transporter proteins (GLUTs): 1) erythrocytic membrane, skeletal muscle, lymphocytes, ovaries, breast; 2) pancreas, retina, erythrocytes; 3) adipocytes, ovaries, testis; 4) skeletal muscle, adipocytes, ovaries, myocardium; 5) breast, small intestine, testis, kidney, erythrocytes; 6) spleen, leucocytes, brain; 7) liver; 8) testis, brain; 9) liver, kidney; 10) liver, pancreas; 11) heart, muscle; 12) heart, prostate; 13) brain. We undertook this study to expand the knowledge about physiological uptake and physiological uptake of
18FDG.
Discussion: False positives were as follows: pneumoniae, tuberculosis, sarcoidosis, cryptococcosis, thrombosis, bronchitis, costochondritis, radiation pneumonitis, misregistration for respiratory movements, catheters, thyroid and adrenal adenomas, osteophytes, fractures, abscess, foreign body, surgical wounds, ostomies, prosthesis, degenerative joint diseases, osteomyelitis, amyloidosis, pancreatitis, myositis, gastritis, colitis, herpes zoster.
18FDG should be injected 4-6 h after insulin administration because it will be concentrated in the muscles. The brown fat raises its uptake 50% in late images.
Conclusions: It is vital to know the most frequent sites of physiological uptake in the
18FDG PET/CT studies to identify those regions that occasionally present hypermetabolism but that are not related to neoplastic tumors. This must be taken into consideration in the evaluation of PET/CT studies.
REFERENCES
1. Mireles EM, Estrada SG. En: Altamirano LJ, Estrada SG, Carreras JL. PET y PET/CT en Oncología. 1ª. ed. México: Intersistemas; 2005, pp. 9-18.
2. Wann JG, Lin CS, Chang LC, Hsu YH, Chien CT, Tai DW, et al. Enhanced expression of glucose transporter 1 on erythrocyte membrane in hemodialysis patients: the possible role in erythrocyte ascorbate recycling. Am J Kidney Dis 2006;47:1055-1063.
3. Storgaard H, Poulsen P, Ling C, Groop L, Vaag AA. Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins. J Clin Endocrinol Metab 2006;91:702-708.
4. Chan SS, Twigg SM, Firth SM, Baxter RC. Insulin-like growth factor binding protein-3 leads to insulin resistance in adipocytes. J Clin Endocrinol Metab 2005;90:6588-6595.
Ciaraldi TP, Mudaliar S, Barzin A, Macievic JA, Edelman SV, Park KS, et al. Skeletal muscle GLUT1 transporter protein expression and basal leg glucose uptake are reduced in type 2 diabetes. J Clin Endocrinol Metab 2005;90:352-358.
6. Russell AW, McIntyre HD, Whitehead JP, Prins JB. Adipose tissue from pregnant women with and without gestational diabetes mellitus: insulin-sensitive but resistant to hyperosmolarity. Am J Obstet Gynecol 2005;193:2017-2023.
7. Jin Q, Agrawal L, Van Horn-Ali Z, Alkhatib G. Infection of CD4+ T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: evidence using antibodies specific to the receptor’s large extracellular domain. Virology 2006;349:184-196.
8. Nishimoto H, Matsutani R, Yamamoto S, Takahashi T, Hayashi KG, et al. Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum. J Endocrinol 2006;188:1111-1119.
9. Kokk K, Veräjänkorva E, Laato M, Wu XK, Tapfer H, Pöllänen P. Expression of insulin receptor substrates 1-3, glucose transporters GLUT-1-4, signal regulatory protein 1a, phosphatidylinositol 3-kinase and protein kinase B at the protein level in the human testis. Anat Sci Int 2005;80:91-96.
10. Godoy A, Ulloa V, Rodríguez F, Reinicke K, Yáñez AJ, et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006;207:614-627.
11. Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. RadioGraphics 2004;24:1411-1431.
12. Blodgett TM, Fukui MB, Snyderman CH, Branstetter BF, McCook BM. Combined PET-CT in the head and neck. Part 1. Physiologic, altered physiologic, and artifactual FDG uptake. RadioGraphics 2005;25:897-912.
13. Bogsrud TV, Lowe VJ. Normal variants and pitfalls in whole body PET imaging with 18FDG. Applied Radiol 2006;35:16-30.
14. Nakamoto Y, Tatsumi M, Hammaoud D, Cohade C. 18FDG PET/CT normal uptake in head and neck. Radiology 2005;234:879-885.
15. Zhuang H, Yu Jian Q, Alavi A. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin N Am 2005;43:121-134.
16. Chang JM, Lee HJ, Goo JM, Lee HY, Lee JJ, Chung JK, Im JG. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 2006;7:57-69.
17. Rosenbaum SJ, Lind T, Antoch G, Bockisch A. False-positive FDG PET uptake¾the role of PET/CT. Eur Radiol 2006;16:1054-1065.
18. Yun M, Choi HS, Yoo E, Bong JK, Ryu YH, Lee JD. The role of gastric distention in differentiating recurrent tumor from physiologic uptake in the remnant stomach on 18F-FDG PET. J Nucl Med 2005;46:953-957.
19. Short S, Hoskin P, Wong W. Ovulation and increased FDG uptake on PET: potential for a false-positive result. Clin Nucl Med 2005;30:707.
20. Nishizawa S, Inubushi M, Okada H. Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers. Eur J Nucl Med Mol Imaging 2005;32:549-556.
21. Castellucci P, Nanni C, Farsad M, Alinari L, Zinzani P, et al. Potential pitfalls of 18F-FDG PET in a large series of patients treated for malignant lymphoma: prevalence and scan interpretation. Nucl Med Commun 2005;26:689-694.
22. Delbeke D, Coleman E, Guiberteau MJ, Brown ML, Royal HD, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT. J Nucl Med 2006;47(5):885-895.