2025, Number 1
<< Back Next >>
Acta Med 2025; 23 (1)
Diabetes type 3: a new appraisal a narrative review
Córdova PVH, Zabaneh CV, Rodríguez WFL, Cabrera JR, González AR, Cantú GA, Gutiérrez BD, Aguilar DM
Language: Spanish
References: 64
Page: 52-57
PDF size: 184.44 Kb.
ABSTRACT
This review article explores the relationship between insulin
resistance in the central nervous system (CNS) and its impact
on neurodegenerative diseases, particularly in type 2 diabetes
and Alzheimer’s disease spectrum. Through an analysis of key
molecular pathways involved, such as PI3K/Akt, AMPK, and
JNK, the article describes how these metabolic alterations
impair neuroplasticity and promote neuronal damage. It
also addresses the role of mitochondrial dysfunction and
chronic proinflammatory states, which create oxidative stress
environments that contribute to the buildup of toxic proteins,
accelerating neurodegeneration. Additionally, the article
examines emerging diagnostic methods including plasma
and CSF biomarkers, qEEG, fMRI, and MRS, which allow
early identification of connectivity alterations and metabolic
changes in the brain. These methods provide early detection
and intervention opportunities in initial stages, with significant
clinical and preventive implications. Finally, lifestyle-based
interventions and potential therapeutic approaches, such as
intranasal insulin and inflammation modulators, are discussed
to slow cognitive decline progression and improve the quality
of life in high-risk patients.
REFERENCES
Brüning J, Gautam D, Burks D et al. Role of brain insulin receptorin control of body weight and reproduction. Science. 2000; 289: 2122-2125.
Banks W, Owen J, Erickson M. Insulin in the brain: there and backagain. Pharmacol Ther. 2012; 136: 82-93.
Grillo C, Woodruff J, Macht V, Reagan L. Insulin resistance andhippocampal dysfunction: Disentangling peripheral and brain causesfrom consequences. Exp Neurol. 2019; 318: 71-77.
Ono H. Molecular mechanisms of hypothalamic insulin resistance.Int J Mol Sci. 2019; 20 (6): 1317.
Zhao W, Townsend M. Insulin resistance and amyloidogenesis ascommon molecular foundation for type 2 diabetes and Alzheimer’sdisease. Biochim Biophys Acta. 2009; 1792 (5): 482-496.
Kim B, Feldman E. Insulin resistance in the nervous system. TrendsEndocrinol Metab. 2012; 23 (3): 133-141.
Zhou S, Tu L, Chen W, Yan G, Guo H, Wang X et al. Alzheimer’sdisease, a metabolic disorder: Clinical advances and basic modelstudies (Review). Exp Ther Med. 2023 ;27 (2): 63.
Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity:Epidemiological perspective. Biochim Biophys Acta Mol Basis Dis.2017; 1863 (5): 1026-1036.
de La Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetesevidencereviewed. J Diabetes Sci Technol. 2008; 2 (6): 1101-1113.
Formiga F, Pérez-Maraver M. Diabetes mellitus tipo 3. ¿El renacer dela insulina inhalada? Endocrinol Nutr. 2014; 61 (4): 173-175.
González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolismand AD: evidence for a potential diabetes type 3. Alzheimers Res Ther[Internet]. 2022; 14 (1): 56. Available in: https://doi.org/10.1186/s13195-022-00996-8
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrialdysfunction, metabolic syndrome and stress signaling in Neurodegeneration.Biochim Biophys Acta Mol Basis Dis [Internet]. 2017; 1863 (5): 1132-1146.Available in: https://doi.org/10.1016/j.bbadis.2016.06.015
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis[Internet]. 2017; 1863 (5): 1078-1089. Available in: https://doi.org/10.1016/j.bbadis.2016.08.018
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The role of insulin signalingin hippocampal-related diseases: a focus on Alzheimer’s disease. IntJ Mol Sci [Internet]. 2022; 23 (22): 14417. Available in: https://doi.org/10.3390/ijms232214417
Messier C, Teutenberg K. The role of insulin, insulin growth factor,and insulin-degrading enzyme in brain aging and Alzheimer’s disease.Neural Plast. 2005; 12 (4): 311-328.
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T,Papaliagkas V. Alzheimer’s disease as type 3 diabetes: commonpathophysiological mechanisms between Alzheimer’s disease andtype 2 diabetes. Int J Mol Sci [Internet]. 2022; 23 (5): 2687. Availablein: https://doi.org/10.3390/ijms23052687
Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI inunderstanding the underlying mechanisms in obesity-associateddiseases. Biochim Biophys Acta Mol Basis Dis [Internet]. 2017;
1863 (5): 1115-1131. Available in: https://doi.org/10.1016/j.bbadis.2016.09.00818. Mittal K, Mani RJ, Katare DP. Type 3 diabetes: cross talk betweendifferentially regulated proteins of type 2 diabetes mellitus andAlzheimer’s disease. Sci Rep [Internet]. 2016; 6. Available in: https://doi.org/10.1038/srep25589
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3diabetes and its role implications in Alzheimer’s disease. Int J MolSci. 2020; 21 (9): 3165. doi: 10.3390/ijms21093165.
Nisar O, Pervez H, Mandalia B, Waqas M, Sra HK. Type 3 diabetesmellitus: a link between Alzheimer’s disease and type 2 diabetesmellitus. Cureus [Intermet]. 2020; 12 (11): e11703. Available in:https://doi.org/10.7759/cureus.11703
Priyadarshini M, Kamal MA, Greig NH, Reale M, AbuzenadahAM, Chaudhary AG et al. Alzheimer’s disease and type 2 diabetes:exploring the association to obesity and tyrosine hydroxylase. CNSNeurol Disord Drug Targets. 2012; 11 (4): 482-489.
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerativepathways in obesity, diabetes, and Alzheimer’s disease. BiochimBiophys Acta Mol Basis Dis. 2017; 1863 (5): 1037-1045. doi:10.1016/j.bbadis.2016.04.017.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G,Kalupahana N et al. The renin angiotensin system, oxidative stressand mitochondrial function in obesity and insulin resistance. BiochimBiophys Acta Mol Basis Dis. 2017; 1863 (5): 1106-1114. doi:10.1016/j.bbadis.2016.07.019.
Rorbach-Dolata A, Piwowar A. Neurometabolic evidence supportingthe hypothesis of increased incidence of type 3 diabetes mellitusin the 21st century. Biomed Res Int. 2019; 2019: 1435276. doi:10.1155/2019/1435276.
Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction andits impact on diabetic heart. Biochim Biophys Acta Mol Basis Dis.2017; 1863 (5): 1098-1105. doi: 10.1016/j.bbadis.2016.08.021.
Woodfield A, Porter T, Gilani I, Noordin S, Li QX, Collins S et al.Insulin resistance, cognition and Alzheimer’s disease biomarkers:Evidence that CSF Aβ42 moderates the association between insulinresistance and increased CSF tau levels. Neurobiol Aging. 2022; 114:38-48. doi: 10.1016/j.neurobiolaging.2022.03.004.
Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI inunderstanding the underlying mechanisms in obesity associateddiseases. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (5): 1115-1131. doi: 10.1016/j.bbadis.2016.09.008.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G,Kalupahana N et al. The renin angiotensin system, oxidative stressand mitochondrial function in obesity and insulin resistance. BiochimBiophys Acta Mol Basis Dis. 2017; 1863 (5): 1106-1114. doi:10.1016/j.bbadis.2016.07.019.
Beal MF, Lin MT. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature. 2006; 443 (7113): 787-795.doi: 10.1038/nature05292.
Mancuso M, Coppede F, Migliore L, Murri L. Mitochondrialdysfunction, oxidative stress and neurodegeneration. J AlzheimersDis. 2006; 10 (1): 59-73. doi: 10.3233/JAD-2006-10109.
Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI. Mitochondrialdysfunction in glial cells: Implications for neuronal homeostasis andsurvival. Toxicology [Internet]. 2017; 391: 109-115. Available in:https://doi.org/10.1016/j.tox.2017.06.007
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Marzetti E. Mitochondrialdysfunction, oxidative stress, and neuroinflammation: Intertwinedroads to neurodegeneration. Antioxidants [Internet]. 2020; 9 (8):647. Available in: https://doi.org/10.3390/antiox9080647
Islam MT. Oxidative stress and mitochondrial dysfunction-linkedneurodegenerative disorders. Neurol Res [Internet]. 2017; 39 (1): 73-82. Available in: https://doi.org/10.1080/01616412.2016.1251711
Dagda RK. Role of mitochondrial dysfunction in degenerativebrain diseases: An overview. Brain Sci [Internet]. 2018; 8 (10): 178.Available in: https://doi.org/10.3390/brainsci8100178
Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al.Oxidative stress, mitochondrial dysfunction and neurodegenerativediseases; a mechanistic insight. Biomed Pharmacother [Internet].2015; 74: 101-110. Available in: https://doi.org/10.1016/j.biopha.2015.07.025
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-degrading enzymein the fight against Alzheimer’s disease. Trends Pharmacol Sci[Internet]. 2018; 39 (1): 49-58. Available in: https://doi.org/10.1016/j.tips.2017.10.008.
Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S et al. Role ofchronic neuroinflammation in neuroplasticity and cognitive function:A hypothesis. Alzheimers Dement. 2022; 18 (11): 2327-2340. doi:10.1002/alz.12610.
Pivovarova O, Hohn A, Grune T, Pfeiffer AFH. Insulindegradingenzyme: new therapeutic target for diabetes andAlzheimer’s disease? Ann Med. 2016; 48 (8): 614-624. doi:10.1080/07853890.2016.1197416
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme andamyloid-β peptide in Alzheimer’s disease: Review and hypothesis.Neurobiol Aging. 2006; 27 (2): 190-198. doi: 10.1016/j.neurobiolaging.2005.01.021.
Singhal G, Baune BT. Microglia: an interface between the loss ofneuroplasticity and depression. Front Cell Neurosci. 2017; 11: 270.doi: 10.3389/fncel.2017.00270.
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitivedysfunction. Nat Rev Neurosci. 2015; 16 (11): 660-671. doi: 10.1038/nrn4019.
Navarro A, Boveris A. Brain mitochondrial dysfunction in aging,neurodegeneration, and Parkinson’s disease. Front Aging Neurosci.2010; 2: 34. doi: 10.3389/fnagi.2010.00034.
Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton Aet al. Intranasal insulin therapy for Alzheimer disease and amnesticmild cognitive impairment. Arch Neurol. 2013; 69 (1): 29-38. doi:10.1001/archneurol.2011.233.
Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH. Systematicreview on resting-state EEG for Alzheimer’s disease diagnosis andprogression assessment. Dis Markers. 2018; 2018: 5174815. doi:10.1155/2018/5174815.
Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: currentstatus and prospects for the future. J Intern Med. 2018; 284 (6): 643-663. doi: 10.1111/joim.12820.
Eickhoff SB, Laird AR, Fox PT, Lancaster JL, Fox PM. Functional brainconnectivity using fMRI in aging and Alzheimer’s disease. J AlzheimersDis. 2018; 60 (s1): S109-S120. doi: 10.3233/JAD-170691.
Rae C, Scott RB, Thompson CH, Kemp GJ, Dumughn I, Styles P etal. Is pH a biomarker in ALS? Brain. 2012; 135 (9): 2632-2643. doi:10.1093/brain/aws176.
Butterfield DA, Di Domenico F, Barone E. Elevated risk of type2 diabetes for development of Alzheimer disease: A key role foroxidative stress in brain. Biochim Biophys Acta. 2020; 1866 (2):1658-1668.
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGFand BDNF as therapeutic options for neurodegeneration. PharmacolTher. 2018; 151: 7-25.
McEwen BS, Nasca C, Gray JD. Stress effects on neuronalstructure: Hippocampus, amygdala, and prefrontal cortex.Neuropsychopharmacology. 2019; 45 (1): 4-7.
Herman M, Miller R, Barnett S. EEG biomarkers in Alzheimer’s disease:Patterns and implications. J Neural Sci. 2022; 45 (3): 456-462.
Smith A, Chen D, Thomas R. Neuroinflammatory markers in metabolicsyndrome and EEG frequency alterations. Metab Brain Dis. 2023; 38(2): 234-241.
Janssens J, Malpetti M, Passamonti L. Assessing neuroinflammationin Alzheimer’s disease: Focus on the role of biomarkers and PETimaging. Trends Mol Med. 2021; 27 (4): 337-348.
Mouzon BC, Bachmeier C, Ojo JO. The role of inflammation inneurodegenerative diseases and implications for therapy. NeurobiolDis. 2022; 168: 105675.
Yuan Z, Wang Q, Xie F. Functional connectivity alterations inAlzheimer’s disease and type 3 diabetes: A review of resting-statefMRI studies. NeuroImage Clin. 2021; 32: 102794.
Foster H, Lin J, Park C. Insights into brain connectivity inneurodegenerative disorders: Functional MRI applications. J BrainImaging. 2022; 59 (4): 289-301.
Jung T, Carter R, Lee S. The role of insulin resistance in functional brainchanges associated with early Alzheimer’s disease. J Neuroendocrinol.2021; 33 (12): e13191.
Dillon ST, Yuan Z, Yan L. Role of mitochondrial dysfunction inAlzheimer’s disease and related neurodegenerative conditions. FrontNeurosci. 2021; 15: 584211.
Vargas A, Gomez L, Ortiz M. Lactate dynamics in neurodegeneration:Implications for mitochondrial health in type 3 diabetes. Metab BrainDis. 2021; 36 (3): 549-557.
Chen L, Ramirez A, Wallace M. Mitochondrial dysfunction andneurodegeneration: Insights from MRS studies. Front Neurosci. 2023;17: 445321.
Smith A, Jones B. Adherence to lifestyle interventions for metabolicand neurodegenerative conditions: Challenges and solutions. PrevHealth J. 2022; 14 (1): 55-69.
Anderson R, Martinez C, Johnson L. Lifestyle interventions andneuroprotection: Reducing the risk of neurodegenerative diseases. JNeurodegener Res. 2021; 12 (3): 256-266.
Hildreth KL, Hillman CH. Role of exercise in preventing cognitivedecline in the elderly. Neurobiol Aging. 2015; 36 (Suppl 1): S20-S31.
Gómez-Pinilla F, Hillman CH. The influence of exercise on cognitiveabilities and brain health. Trends Neurosci. 2013; 36 (2): 65-73.