2025, Número 1
<< Anterior Siguiente >>
Acta Med 2025; 23 (1)
Una nueva propuesta: diabetes tipo 3, una revisión narrativa
Córdova PVH, Zabaneh CV, Rodríguez WFL, Cabrera JR, González AR, Cantú GA, Gutiérrez BD, Aguilar DM
Idioma: Español
Referencias bibliográficas: 64
Paginas: 52-57
Archivo PDF: 184.44 Kb.
RESUMEN
Este artículo de revisión explora la relación entre la resistencia
a la insulina en el sistema nervioso central (SNC) y su impacto
en enfermedades neurodegenerativas, particularmente en el
espectro de la diabetes tipo 2 y el espectro de la enfermedad
de Alzheimer. A través de un análisis de vías moleculares
clave, como PI3K/Akt, AMPK y JNK, el artículo describe cómo
estas alteraciones metabólicas afectan la neuroplasticidad y
promueven el daño neuronal. También aborda el papel de la
disfunción mitocondrial y los estados proinflamatorios crónicos,
que crean entornos de estrés oxidativo y contribuyen a la
acumulación de proteínas tóxicas, acelerando la neurodegeneración.
Además, el artículo examina métodos diagnósticos
emergentes, incluyendo biomarcadores plasmáticos y de LCR,
qEEG, fMRI y MRS, que permiten la identificación temprana
de alteraciones en la conectividad y cambios metabólicos
en el cerebro. Estos métodos ofrecen oportunidades para la
detección e intervención tempranas en etapas iniciales, con
importantes implicaciones clínicas y preventivas. Finalmente,
se discuten intervenciones basadas en el estilo de vida y posibles
enfoques terapéuticos, como la insulina intranasal y los
moduladores de la inflamación, para frenar la progresión del
deterioro cognitivo y mejorar la calidad de vida en pacientes
de alto riesgo.
REFERENCIAS (EN ESTE ARTÍCULO)
Brüning J, Gautam D, Burks D et al. Role of brain insulin receptorin control of body weight and reproduction. Science. 2000; 289: 2122-2125.
Banks W, Owen J, Erickson M. Insulin in the brain: there and backagain. Pharmacol Ther. 2012; 136: 82-93.
Grillo C, Woodruff J, Macht V, Reagan L. Insulin resistance andhippocampal dysfunction: Disentangling peripheral and brain causesfrom consequences. Exp Neurol. 2019; 318: 71-77.
Ono H. Molecular mechanisms of hypothalamic insulin resistance.Int J Mol Sci. 2019; 20 (6): 1317.
Zhao W, Townsend M. Insulin resistance and amyloidogenesis ascommon molecular foundation for type 2 diabetes and Alzheimer’sdisease. Biochim Biophys Acta. 2009; 1792 (5): 482-496.
Kim B, Feldman E. Insulin resistance in the nervous system. TrendsEndocrinol Metab. 2012; 23 (3): 133-141.
Zhou S, Tu L, Chen W, Yan G, Guo H, Wang X et al. Alzheimer’sdisease, a metabolic disorder: Clinical advances and basic modelstudies (Review). Exp Ther Med. 2023 ;27 (2): 63.
Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity:Epidemiological perspective. Biochim Biophys Acta Mol Basis Dis.2017; 1863 (5): 1026-1036.
de La Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetesevidencereviewed. J Diabetes Sci Technol. 2008; 2 (6): 1101-1113.
Formiga F, Pérez-Maraver M. Diabetes mellitus tipo 3. ¿El renacer dela insulina inhalada? Endocrinol Nutr. 2014; 61 (4): 173-175.
González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolismand AD: evidence for a potential diabetes type 3. Alzheimers Res Ther[Internet]. 2022; 14 (1): 56. Available in: https://doi.org/10.1186/s13195-022-00996-8
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrialdysfunction, metabolic syndrome and stress signaling in Neurodegeneration.Biochim Biophys Acta Mol Basis Dis [Internet]. 2017; 1863 (5): 1132-1146.Available in: https://doi.org/10.1016/j.bbadis.2016.06.015
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis[Internet]. 2017; 1863 (5): 1078-1089. Available in: https://doi.org/10.1016/j.bbadis.2016.08.018
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The role of insulin signalingin hippocampal-related diseases: a focus on Alzheimer’s disease. IntJ Mol Sci [Internet]. 2022; 23 (22): 14417. Available in: https://doi.org/10.3390/ijms232214417
Messier C, Teutenberg K. The role of insulin, insulin growth factor,and insulin-degrading enzyme in brain aging and Alzheimer’s disease.Neural Plast. 2005; 12 (4): 311-328.
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T,Papaliagkas V. Alzheimer’s disease as type 3 diabetes: commonpathophysiological mechanisms between Alzheimer’s disease andtype 2 diabetes. Int J Mol Sci [Internet]. 2022; 23 (5): 2687. Availablein: https://doi.org/10.3390/ijms23052687
Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI inunderstanding the underlying mechanisms in obesity-associateddiseases. Biochim Biophys Acta Mol Basis Dis [Internet]. 2017;
1863 (5): 1115-1131. Available in: https://doi.org/10.1016/j.bbadis.2016.09.00818. Mittal K, Mani RJ, Katare DP. Type 3 diabetes: cross talk betweendifferentially regulated proteins of type 2 diabetes mellitus andAlzheimer’s disease. Sci Rep [Internet]. 2016; 6. Available in: https://doi.org/10.1038/srep25589
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3diabetes and its role implications in Alzheimer’s disease. Int J MolSci. 2020; 21 (9): 3165. doi: 10.3390/ijms21093165.
Nisar O, Pervez H, Mandalia B, Waqas M, Sra HK. Type 3 diabetesmellitus: a link between Alzheimer’s disease and type 2 diabetesmellitus. Cureus [Intermet]. 2020; 12 (11): e11703. Available in:https://doi.org/10.7759/cureus.11703
Priyadarshini M, Kamal MA, Greig NH, Reale M, AbuzenadahAM, Chaudhary AG et al. Alzheimer’s disease and type 2 diabetes:exploring the association to obesity and tyrosine hydroxylase. CNSNeurol Disord Drug Targets. 2012; 11 (4): 482-489.
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerativepathways in obesity, diabetes, and Alzheimer’s disease. BiochimBiophys Acta Mol Basis Dis. 2017; 1863 (5): 1037-1045. doi:10.1016/j.bbadis.2016.04.017.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G,Kalupahana N et al. The renin angiotensin system, oxidative stressand mitochondrial function in obesity and insulin resistance. BiochimBiophys Acta Mol Basis Dis. 2017; 1863 (5): 1106-1114. doi:10.1016/j.bbadis.2016.07.019.
Rorbach-Dolata A, Piwowar A. Neurometabolic evidence supportingthe hypothesis of increased incidence of type 3 diabetes mellitusin the 21st century. Biomed Res Int. 2019; 2019: 1435276. doi:10.1155/2019/1435276.
Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction andits impact on diabetic heart. Biochim Biophys Acta Mol Basis Dis.2017; 1863 (5): 1098-1105. doi: 10.1016/j.bbadis.2016.08.021.
Woodfield A, Porter T, Gilani I, Noordin S, Li QX, Collins S et al.Insulin resistance, cognition and Alzheimer’s disease biomarkers:Evidence that CSF Aβ42 moderates the association between insulinresistance and increased CSF tau levels. Neurobiol Aging. 2022; 114:38-48. doi: 10.1016/j.neurobiolaging.2022.03.004.
Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI inunderstanding the underlying mechanisms in obesity associateddiseases. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (5): 1115-1131. doi: 10.1016/j.bbadis.2016.09.008.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G,Kalupahana N et al. The renin angiotensin system, oxidative stressand mitochondrial function in obesity and insulin resistance. BiochimBiophys Acta Mol Basis Dis. 2017; 1863 (5): 1106-1114. doi:10.1016/j.bbadis.2016.07.019.
Beal MF, Lin MT. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature. 2006; 443 (7113): 787-795.doi: 10.1038/nature05292.
Mancuso M, Coppede F, Migliore L, Murri L. Mitochondrialdysfunction, oxidative stress and neurodegeneration. J AlzheimersDis. 2006; 10 (1): 59-73. doi: 10.3233/JAD-2006-10109.
Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI. Mitochondrialdysfunction in glial cells: Implications for neuronal homeostasis andsurvival. Toxicology [Internet]. 2017; 391: 109-115. Available in:https://doi.org/10.1016/j.tox.2017.06.007
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Marzetti E. Mitochondrialdysfunction, oxidative stress, and neuroinflammation: Intertwinedroads to neurodegeneration. Antioxidants [Internet]. 2020; 9 (8):647. Available in: https://doi.org/10.3390/antiox9080647
Islam MT. Oxidative stress and mitochondrial dysfunction-linkedneurodegenerative disorders. Neurol Res [Internet]. 2017; 39 (1): 73-82. Available in: https://doi.org/10.1080/01616412.2016.1251711
Dagda RK. Role of mitochondrial dysfunction in degenerativebrain diseases: An overview. Brain Sci [Internet]. 2018; 8 (10): 178.Available in: https://doi.org/10.3390/brainsci8100178
Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al.Oxidative stress, mitochondrial dysfunction and neurodegenerativediseases; a mechanistic insight. Biomed Pharmacother [Internet].2015; 74: 101-110. Available in: https://doi.org/10.1016/j.biopha.2015.07.025
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-degrading enzymein the fight against Alzheimer’s disease. Trends Pharmacol Sci[Internet]. 2018; 39 (1): 49-58. Available in: https://doi.org/10.1016/j.tips.2017.10.008.
Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S et al. Role ofchronic neuroinflammation in neuroplasticity and cognitive function:A hypothesis. Alzheimers Dement. 2022; 18 (11): 2327-2340. doi:10.1002/alz.12610.
Pivovarova O, Hohn A, Grune T, Pfeiffer AFH. Insulindegradingenzyme: new therapeutic target for diabetes andAlzheimer’s disease? Ann Med. 2016; 48 (8): 614-624. doi:10.1080/07853890.2016.1197416
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme andamyloid-β peptide in Alzheimer’s disease: Review and hypothesis.Neurobiol Aging. 2006; 27 (2): 190-198. doi: 10.1016/j.neurobiolaging.2005.01.021.
Singhal G, Baune BT. Microglia: an interface between the loss ofneuroplasticity and depression. Front Cell Neurosci. 2017; 11: 270.doi: 10.3389/fncel.2017.00270.
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitivedysfunction. Nat Rev Neurosci. 2015; 16 (11): 660-671. doi: 10.1038/nrn4019.
Navarro A, Boveris A. Brain mitochondrial dysfunction in aging,neurodegeneration, and Parkinson’s disease. Front Aging Neurosci.2010; 2: 34. doi: 10.3389/fnagi.2010.00034.
Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton Aet al. Intranasal insulin therapy for Alzheimer disease and amnesticmild cognitive impairment. Arch Neurol. 2013; 69 (1): 29-38. doi:10.1001/archneurol.2011.233.
Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH. Systematicreview on resting-state EEG for Alzheimer’s disease diagnosis andprogression assessment. Dis Markers. 2018; 2018: 5174815. doi:10.1155/2018/5174815.
Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: currentstatus and prospects for the future. J Intern Med. 2018; 284 (6): 643-663. doi: 10.1111/joim.12820.
Eickhoff SB, Laird AR, Fox PT, Lancaster JL, Fox PM. Functional brainconnectivity using fMRI in aging and Alzheimer’s disease. J AlzheimersDis. 2018; 60 (s1): S109-S120. doi: 10.3233/JAD-170691.
Rae C, Scott RB, Thompson CH, Kemp GJ, Dumughn I, Styles P etal. Is pH a biomarker in ALS? Brain. 2012; 135 (9): 2632-2643. doi:10.1093/brain/aws176.
Butterfield DA, Di Domenico F, Barone E. Elevated risk of type2 diabetes for development of Alzheimer disease: A key role foroxidative stress in brain. Biochim Biophys Acta. 2020; 1866 (2):1658-1668.
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGFand BDNF as therapeutic options for neurodegeneration. PharmacolTher. 2018; 151: 7-25.
McEwen BS, Nasca C, Gray JD. Stress effects on neuronalstructure: Hippocampus, amygdala, and prefrontal cortex.Neuropsychopharmacology. 2019; 45 (1): 4-7.
Herman M, Miller R, Barnett S. EEG biomarkers in Alzheimer’s disease:Patterns and implications. J Neural Sci. 2022; 45 (3): 456-462.
Smith A, Chen D, Thomas R. Neuroinflammatory markers in metabolicsyndrome and EEG frequency alterations. Metab Brain Dis. 2023; 38(2): 234-241.
Janssens J, Malpetti M, Passamonti L. Assessing neuroinflammationin Alzheimer’s disease: Focus on the role of biomarkers and PETimaging. Trends Mol Med. 2021; 27 (4): 337-348.
Mouzon BC, Bachmeier C, Ojo JO. The role of inflammation inneurodegenerative diseases and implications for therapy. NeurobiolDis. 2022; 168: 105675.
Yuan Z, Wang Q, Xie F. Functional connectivity alterations inAlzheimer’s disease and type 3 diabetes: A review of resting-statefMRI studies. NeuroImage Clin. 2021; 32: 102794.
Foster H, Lin J, Park C. Insights into brain connectivity inneurodegenerative disorders: Functional MRI applications. J BrainImaging. 2022; 59 (4): 289-301.
Jung T, Carter R, Lee S. The role of insulin resistance in functional brainchanges associated with early Alzheimer’s disease. J Neuroendocrinol.2021; 33 (12): e13191.
Dillon ST, Yuan Z, Yan L. Role of mitochondrial dysfunction inAlzheimer’s disease and related neurodegenerative conditions. FrontNeurosci. 2021; 15: 584211.
Vargas A, Gomez L, Ortiz M. Lactate dynamics in neurodegeneration:Implications for mitochondrial health in type 3 diabetes. Metab BrainDis. 2021; 36 (3): 549-557.
Chen L, Ramirez A, Wallace M. Mitochondrial dysfunction andneurodegeneration: Insights from MRS studies. Front Neurosci. 2023;17: 445321.
Smith A, Jones B. Adherence to lifestyle interventions for metabolicand neurodegenerative conditions: Challenges and solutions. PrevHealth J. 2022; 14 (1): 55-69.
Anderson R, Martinez C, Johnson L. Lifestyle interventions andneuroprotection: Reducing the risk of neurodegenerative diseases. JNeurodegener Res. 2021; 12 (3): 256-266.
Hildreth KL, Hillman CH. Role of exercise in preventing cognitivedecline in the elderly. Neurobiol Aging. 2015; 36 (Suppl 1): S20-S31.
Gómez-Pinilla F, Hillman CH. The influence of exercise on cognitiveabilities and brain health. Trends Neurosci. 2013; 36 (2): 65-73.