2022, Number 1
Application of the random forest algorithm to a model of anemia classification in Peruvian children
Language: Spanish
References: 25
Page: 1-20
PDF size: 422.70 Kb.
ABSTRACT
Introduction: in Peru, in recent years there is a decrease in poverty. However, the prevalence of anemia continues high; it affects 40,00 % of children from six to 35 months of age.Objective: to identify risk factors or forecasts in the appearance of anemia in Peruvian children.
Methods: a transverse observational study was carried out from the database created for the Demographic and Family Health Survey, by the National Institute of Statistics and Informatics during the years 2015-2019. The population was constituted by 57 410 children from six to 35 months of age, which had hemoglobin exams. 33 independent variables were selected and six procedures were raised with the random forest algorithm. Values of the area indicators under the curve, specificity and sensitivity were obtained.
Results: The procedure that best predicted the presence of anemia, with values for specificity indicators (63,62 %) and sensitivity (65,88 %) more similar, used balanced data with readjustment of the parameters, reduction of the amount of trees and selection of variables.
Conclusions: the five most important independent variables for the model were: child age, conglomerate altitude, number of prenatal visits for pregnancy, moment of the first prenatal control and size of the mother. The study provided scientific evidence about the use of automatic learning algorithms to predict the appearance of anemia based on common risk factors.
REFERENCES
Instituto Nacional de Estadística e Informática (Perú). Encuesta Demográfica y de Salud Familiar. ENDES 2020 [Internet]. Lima: Instituto Nacional de Estadística e Informática; 2021 [citado 14 May 2021]. Disponible en: https://proyectos.inei.gob.pe/endes/2020/INFORME_PRINCIPAL_2020/INFORME_PRINCIPAL_ENDES_2020.pdf
Ministerio de Salud (Perú). Plan nacional para la reducción y control de la anemia materno infantil y la desnutrición crónica infantil y la desnutrición crónica infantil en el Perú: 2017-2021 [Internet]. Lima: MINSA; 2021 [citado 12 Abr 2017]. Disponible en: https://cdn.www.gob.pe/uploads/document/file/322898/Plan_nacional_para_la_reducci%C3%B3n_y_control_de_la_anemia_materno_infantil_y_la_desnutrici%C3%B3n_cr%C3%B3nica_infantil_en_el_Per%C3%BA__2017___2021._Documento_t%C3%A9cnico20190621-17253-s9ub98.pdf
Ezzati M, López AD, Rodgers A, Murray CJL, editores. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Vol. 1 [Internet]. Geneva: WHO; 2004. [citado 18 Oct 2014]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/42770/9241580313_eng.pdf
Durán-Romo B. Comparación de metodologías de imputación aplicadas a ingresos laborales de la ENOE. Realidad, Datos y Espacio. Revista Internacional de Estadística y Geografía [Internet]. Dic 2019 [citado 18 Dic 2019];10(3):5-27. Disponible en: https://rde.inegi.org.mx/wp-content/uploads/2019/09/RDE29_art01_2c.pdf
Fernández-Vásquez RF. Regresión bayesiana con enlaces asimétricos para la clasificación de clientes con propensión a caer en mora en una entidad bancaria. Lima: Universidad Nacional Agraria La Molina; 2018 [citado 20 Feb 2018]. Disponible en: http://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/3093/fernandez-vasquez-richard-fernando.pdf?sequence=3&isAllowed=y
Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, et al. Comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics [Internet]. 2009 [citado 20 May 2014];10:213. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724423/pdf/1471-2105-10-213.pdf
Khan JR, Chowdhury S, Islam H, Raheem E. Machine learning algorithms to predict the childhood anemia in Bangladesh. Journal of Data Science [Internet]. 2019 [citado 20 May 2019];17(1)195-218. Disponible en: https://www.jds-online.com/files/01%20No.09%20310%20Machine%20learning%20algorithms%20to%20predict%20the%20childhood%20anemia%20in%20Bangladesh.pdf
Alghamdi M, Al-Mallah M, Keteyian S, Brawner C, Ehrman J, Sakr S. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford exercise testing (FIT) project. PloS One [Internet]. 2017 [citado 24 Jul 2017];12(7):e0179805. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524285/pdf/pone.0179805.pdf
Khare S, Kavyashree S, Gupta D, Jyotishi A. Investigation of nutritional status of children based on machine learning techniques using Indian demographic and health survey data.Proc Comp Sci [Internet]. 2017 [citado 24 Jul 2017]115:338-49 Disponible en: https://reader.elsevier.com/reader/sd/pii/S187705091731894X?token=5D7B79CF5C71745C89B20E2D46EFE7FA649FA3E9ED92AED1E96C5BAD5AB8768649C171CDB95401D47D44C2C9ECCA1516yoriginRegion=us-east-1yoriginCreation=20220607134821
Gebremeskel MG, Tirore LL. Factors associated with anemia among children 6-23 months of age in Ethiopia: a multilevel analysis of data from the 2016 Ethiopia Demographic and Health Survey. Pediatr Health Med Ther [Internet]. 2020 [citado 27 Jul 2020];11:347-57. Disponible en: https://www.dovepress.com/getfile.php?fileID=61509
Molla A, Egata G, Mesfin F, Arega M, Getacher L. Prevalence of anemia and associated factors among infants and young children aged 6-23 months in Debre Berhan Town, North Shewa, Ethiopia. J Nutr Metab [Internet]. 2020 [citado 27 Jul 2020];2020:2956129. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768586/pdf/jnme2020-2956129.pdf
Shenton LM, Jones AD, Wilson ML. Factors associated with anemia status among children aged 6-59 months in Ghana, 2003-2014. Matern Child Health J [Internet]. Abr 2020 [citado 21 Abr 2020];24(4):483-502. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078144/pdf/10995_2019_Article_2865.pdf
Manikandan AD. Factors Associated with anemia among women and children belonging to the scheduled castes and scheduled tribes in degraded districts of India. Indian Development Policy Review [Internet]. 2020 [citado 21 Abr 2020];1(1):43-66. Disponible en: https://www.esijournals.com/image/catalog/Journal%20Paper/IDPR/No%201%20(2020)/4_Manikandan.pdf