2007, Number 1
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2007; 20 (1)
Mesencephalic dopaminergic tract lesions in tobacco addiction behavior. A review of mechanisms of disease and an hypothesis
Escobar AE, Pérez BO, Ramírez VA, Sansores RH
Language: Spanish
References: 48
Page: 56-63
PDF size: 113.00 Kb.
ABSTRACT
Tobacco use, a well known cause of death, represents a preventable disease related to many health problems. Epidemiological studies estimate a prevalence of 1,100 million tobacco dependent people. Nicotine addiction depends on multiple factors; studies have reported that the central nervous system plays an important role through the stimulation of neuronal dopaminergic nicotine receptors. The main dopamine synthesis sites are located in the neurons of the substantia nigra and the ventral tegmental area of the mesencephalus, which are projected towards the basal ganglia and
accumbens nuclei.
In vivo studies suggest that the dopaminergic cistern is highly implicated in nicotine dependence, showing that the neurotoxic lesions of the mesolimbic system or the systemic administration of nicotine receptor blockers reduce the quantity of nicotine administered. Nevertheless, these studies have been carried out in animal models; thus, such findings can not be confirmed in humans due to methodological limitations (i.e. it is unethical to produce toxic or vascular damage of the mesencephalic dopaminergic tracts). It could be possible to carry out such a study in patients with mesencephalic injuries secondary to stroke.
REFERENCES
Parada TI, Arredondo LA, Arjonilla AS. Costos de hospitalización por farmacodependencia para población no asegurada en México. Salud Mental 2003; 26:17-24.
Tapia CR, Kuri MP, Hoy GMJ. Panorama epidemiológico del tabaquismo en México. Salud Pública Méx 2001;43:478-484.
World Health Organization. The smoking epidemic-A fire in the global village. 25th August, Ginebra: 1997, Press Release WHO/61.
Villalba CJ, Ramírez VA, Sansores RH. Costos de la atención médica. CONADIC Informa. Boletín Especial de Tabaquismo. 2001;3:2.
Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002;22:3338-3341.
Leshner AI. Drug abuse and addiction treatment research. The next generation. Arch Gen Psychiatry 1997;54:691-694.
Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992;107:285-289.
Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 1994;653:278-284.
Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002; 22:3338-3341.
Laviolette SR, van der Kooy D. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 2003;8:50-59.
Koob GF, Sanna PP, Bloom FE. Neuroscience of addiction. Neuron 1998;21:467-476.
Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107:285-289.
Corrigall WA, Coen KM. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl) 1991;104:171-176.
Dalack GW, Healy DJ, Meador-Woodruff JH. Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 1998;155:1490-1501.
15.McEvoy JP, Freudenreich O, Levin ED, Rose JE. Haloperidol increases smoking in patients with schizophrenia. Psychopharmacology (Berl) 1995;119: 124-126.
Kauer JA. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 2004;66:447-475.
Newhouse PA, Sunderland T, Narang PK, et al. Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in nonsmoking healthyvolunteers and in patients with Alzheimer’s disease. Psychoneuroendocrinology 1990;15:471-484.
Benowitz NL. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 1996; 36:597-613.
Pickworth WB, Herning RI, Henningfield JE. Mecamylamine reduces some EEG effects of nicotine chewing gum in humans. Pharmacol Biochem Behav 1988;30:149-153.
London ED. Effects of nicotine on cerebral metabolism. Ciba Found Symp 1990;152:131-140.
Linville DG, Arneric SP. Cortical cerebral blood flow governed by the basal forebrain: age-related impairments. Neurobiol Aging 1991;12:503-510.
Linville DG, Williams S, Raszkiewicz JL, Arneric SP. Nicotinic agonists modulate basal forebrain control of cortical cerebral blood flow in anesthetized rats. J Pharmacol Exp Ther 1993;267:440-448.
Jones GM, Sahakian BJ, Levy R, Warburton DM, Gray JA. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology (Berl) 1992;108:485-494.
Wesnes K, Warburton DM. Smoking, nicotine and human performance. Pharmacol Ther 1983;21:189-208.
Lukas RJ, Changeux JP, Le Novere N, et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 1999;51:397-401.
Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997;20:92-98.
Role LW, Berg DK. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 1996;16:1077-1085.
Mihailescu S, Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res 2000;31:131-144.
Court J, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 2000;20:281-298.
Benwell ME, Balfour DJ. Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 1997;325:13-20.
Marshall DL, Redfern PH, Wonnacott S. Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 1997;68:1511-1519.
Björklund A, Lindvall O. Dopamine-containing systems in the CNS. In: Björklund A, Hokfelt T, editors. Handbook of chemical neuroanatomy. Classical transmitters in the CNS. Part 1. Vol 2. Amsterdam: Elsevier; 1984.p. 55-122.
Chinta SJ, Andersen JK. Dopaminergic neurons. Biochem Cell Biol 2005;37:942-946.
Bogerts B, Hantsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 1983;18:951-969.
Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci 2004;5:483-494.
Pidoplichko VI, Noguchi J, Areola OO, et al. Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 2004;11:60-69.
Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002;3:563-573.
Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci 2004;5:483-494.
Nicola SM, Taha SA, Kim SW, Fields HL. Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience 2005;135:1025-1033.
Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 2002;114:475-492.
Mantz J, Thierry AM, Glowinski J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res 1989; 476:377-381.
Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 2004;303:2040-2042.
Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron 1996;16:905-908.
Volkow ND, Fowler JS, Wolf AP, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 1991;148:621-626.
Corrigall WA, Coen KM, Zhang J, Adamson L. Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine. Psychopharmacology (Berl) 2002;160:198-205.
Chen J, Nakamura M, Kawamura T, Takahashi T, Nakahara D. Roles of pedunculopontine tegmental cholinergic receptors in brain stimulation reward in the rat. Pshycopharmacology 2006;184:514-522.
Forster GL, Blaha CD. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 2003; 17:751-762.
48.Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA. The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 2000;96: 735-742.