2007, Número 1
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2007; 20 (1)
Efecto del daño de vías dopaminérgicas mesencefálicas en la conducta adictiva al tabaco. Revisión generadora de una hipótesis
Escobar AE, Pérez BO, Ramírez VA, Sansores RH
Idioma: Español
Referencias bibliográficas: 48
Paginas: 56-63
Archivo PDF: 113.00 Kb.
RESUMEN
El tabaquismo es la enfermedad prevenible que se relaciona con más problemas de salud y causas de muerte en el mundo. Se ha estimado una prevalencia de 1,100 millones de personas en el mundo con adicción al tabaco. La adicción a la nicotina depende de múltiples factores; está documentado que el sistema nervioso central desempeña un importante papel en su desarrollo a través de la estimulación de receptores neuronales dopaminérgicos por la nicotina. La dopamina tiene su principal síntesis en las neuronas de la sustancia nigra y área tegmental ventral del mesencéfalo, las cuales se proyectan hacia los núcleos basales y núcleo
accumbens. Los estudios en animales sugieren que el sistema dopaminérgico está involucrado de manera importante en la adicción a la nicotina. Las lesiones neurotóxicas del sistema mesolímbico o la administración sistémica de un bloqueador del receptor de nicotina reduce la administración de nicotina en roedores; sin embargo, estos hallazgos se han realizado en modelos animales, siendo difícil corroborarlos en humanos porque no se puede experimentar en ellos y causarles daño tóxico o vascular de las vías dopaminérgicas mesencefálicas. Una estrategia circunstancial apropiada podría llevarse a cabo analizando la conducta en términos de adicción de sujetos con lesiones del mesencéfalo, secundarias a un evento vascular cerebral.
REFERENCIAS (EN ESTE ARTÍCULO)
Parada TI, Arredondo LA, Arjonilla AS. Costos de hospitalización por farmacodependencia para población no asegurada en México. Salud Mental 2003; 26:17-24.
Tapia CR, Kuri MP, Hoy GMJ. Panorama epidemiológico del tabaquismo en México. Salud Pública Méx 2001;43:478-484.
World Health Organization. The smoking epidemic-A fire in the global village. 25th August, Ginebra: 1997, Press Release WHO/61.
Villalba CJ, Ramírez VA, Sansores RH. Costos de la atención médica. CONADIC Informa. Boletín Especial de Tabaquismo. 2001;3:2.
Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002;22:3338-3341.
Leshner AI. Drug abuse and addiction treatment research. The next generation. Arch Gen Psychiatry 1997;54:691-694.
Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992;107:285-289.
Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 1994;653:278-284.
Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002; 22:3338-3341.
Laviolette SR, van der Kooy D. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 2003;8:50-59.
Koob GF, Sanna PP, Bloom FE. Neuroscience of addiction. Neuron 1998;21:467-476.
Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107:285-289.
Corrigall WA, Coen KM. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl) 1991;104:171-176.
Dalack GW, Healy DJ, Meador-Woodruff JH. Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 1998;155:1490-1501.
15.McEvoy JP, Freudenreich O, Levin ED, Rose JE. Haloperidol increases smoking in patients with schizophrenia. Psychopharmacology (Berl) 1995;119: 124-126.
Kauer JA. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 2004;66:447-475.
Newhouse PA, Sunderland T, Narang PK, et al. Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in nonsmoking healthyvolunteers and in patients with Alzheimer’s disease. Psychoneuroendocrinology 1990;15:471-484.
Benowitz NL. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 1996; 36:597-613.
Pickworth WB, Herning RI, Henningfield JE. Mecamylamine reduces some EEG effects of nicotine chewing gum in humans. Pharmacol Biochem Behav 1988;30:149-153.
London ED. Effects of nicotine on cerebral metabolism. Ciba Found Symp 1990;152:131-140.
Linville DG, Arneric SP. Cortical cerebral blood flow governed by the basal forebrain: age-related impairments. Neurobiol Aging 1991;12:503-510.
Linville DG, Williams S, Raszkiewicz JL, Arneric SP. Nicotinic agonists modulate basal forebrain control of cortical cerebral blood flow in anesthetized rats. J Pharmacol Exp Ther 1993;267:440-448.
Jones GM, Sahakian BJ, Levy R, Warburton DM, Gray JA. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology (Berl) 1992;108:485-494.
Wesnes K, Warburton DM. Smoking, nicotine and human performance. Pharmacol Ther 1983;21:189-208.
Lukas RJ, Changeux JP, Le Novere N, et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 1999;51:397-401.
Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997;20:92-98.
Role LW, Berg DK. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 1996;16:1077-1085.
Mihailescu S, Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res 2000;31:131-144.
Court J, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 2000;20:281-298.
Benwell ME, Balfour DJ. Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 1997;325:13-20.
Marshall DL, Redfern PH, Wonnacott S. Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 1997;68:1511-1519.
Björklund A, Lindvall O. Dopamine-containing systems in the CNS. In: Björklund A, Hokfelt T, editors. Handbook of chemical neuroanatomy. Classical transmitters in the CNS. Part 1. Vol 2. Amsterdam: Elsevier; 1984.p. 55-122.
Chinta SJ, Andersen JK. Dopaminergic neurons. Biochem Cell Biol 2005;37:942-946.
Bogerts B, Hantsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 1983;18:951-969.
Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci 2004;5:483-494.
Pidoplichko VI, Noguchi J, Areola OO, et al. Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 2004;11:60-69.
Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002;3:563-573.
Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci 2004;5:483-494.
Nicola SM, Taha SA, Kim SW, Fields HL. Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience 2005;135:1025-1033.
Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 2002;114:475-492.
Mantz J, Thierry AM, Glowinski J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res 1989; 476:377-381.
Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 2004;303:2040-2042.
Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron 1996;16:905-908.
Volkow ND, Fowler JS, Wolf AP, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 1991;148:621-626.
Corrigall WA, Coen KM, Zhang J, Adamson L. Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine. Psychopharmacology (Berl) 2002;160:198-205.
Chen J, Nakamura M, Kawamura T, Takahashi T, Nakahara D. Roles of pedunculopontine tegmental cholinergic receptors in brain stimulation reward in the rat. Pshycopharmacology 2006;184:514-522.
Forster GL, Blaha CD. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 2003; 17:751-762.
48.Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA. The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 2000;96: 735-742.